Hypermutation in Bacteria and Humans
细菌和人类的超突变
基本信息
- 批准号:9376381
- 负责人:
- 金额:$ 31.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAffinityAntibodiesAntibody DiversityAntigensApplications GrantsAsthmaB-LymphocytesBacteriaBase PairingBiochemicalCatalysisCell DeathCellsCessation of lifeCrystallizationDNADNA DamageDNA biosynthesisDNA polymerase VDNA-Directed DNA PolymeraseDNA-dependent ATPaseEnergy-Generating ResourcesEnsureEnvironmentEnzymesEscherichia coliExposure toFc ReceptorFluorescence Resonance Energy TransferFrequenciesGeneration of Antibody DiversityGeneticGenetic TranscriptionHumanHypersensitivityIgEImmune responseImmunoglobulin Class SwitchingImmunoglobulin Somatic HypermutationImmunoglobulin Switch RecombinationImmunoglobulinsIndividualIon ChannelLesionLocationMedicalMicroscopyMolecular ConformationMonoclonal AntibodiesMutationOrganismOxygenPainPlayPolymeraseProductionProteinsPruritusRNA Polymerase IIReactionRegulationResolutionRoleStressStructureSystemTestingTubeUltraviolet Raysdeoxycytidine deaminasedesignenvironmental allergenfitnesshigh rewardhigh riskhuman DNAinhibitor/antagonistnovelreceptorrecombinasereconstitutionresearch studyresponsesingle moleculetoxic industrial chemical
项目摘要
Summary
Existential challenges to all organisms result from DNA damaging agents present naturally in the environment,
e.g., UV radiation and oxygen, and from toxic industrial chemicals. The induction of “hypermutation”, while
perhaps counterintuitive, is essential to counter exposure to environmental stress by ensuring cell and
organismic fitness. Hypermutations, mutations occurring at frequencies ~ 10-2 – 10-3 per base pair, straddle a
range between death and fitness in bacteria and humans. The key to fitness is to carefully regulate
hypermutation. Our grant proposal is to elucidate the regulation of two essential hypermutator enzymes, DNA
polymerase V mutasome (pol V Mut) in Escherichia coli that catalyzes translesion DNA synthesis on damaged
DNA templates, and activation-induced deoxycytidine deaminase (AID) required for a robust immune response
in humans. Pol V Mut has a multisubunit structure that includes a RecA molecule, the E. coli recombinase, and
a molecule of ATP. Along with its polymerase activity, pol V Mut also has an intrinsic DNA-dependent ATPase
activity different from all other ATPases. Pol V Mut exists in two conformationally distinct states, activated and
deactivated depending on the location of RecA. We hypothesize that the internal ATPase provides an energy
source to switch between conformation states, akin to an “on-off” toggle switch. We propose to test this
hypothesis using TIRF-FRET microscopy to visualize the dynamics of switching between each conformational
state of pol V Mut at single-molecule resolution, and to use Cryo-EM to determine the location of each pol V
subunit, most importantly RecA, in activated and deactivated forms. AID plays an essential role in the immune
response by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) in B-cells by
deaminating CU during transcription of immunoglobulin variable (IgV) and switch (IgS) region DNA. We
propose to reconstitute the first biochemical system to investigate AID targeting and catalysis during IgV and
IgS transcription by human RNA polymerase II. This study is intended to establish a biochemical basis for the
hypermutation reactions required in the generation of antibody (Ab) diversity. We propose to use TIRF-FRET
microscopy to visualize the action of AID during IgV and IgS transcription, including the influence of proteins
believed to be involved in targeting AID to stalled transcription bubbles. In 2016, we obtained a crystal
structure for AID. We now propose a strategy to obtain an AID-ssDNA co-crystal structure. Environmental
allergens can cause asthma. We will use the co-crystal structure to design AID inhibitors that suppress IgE
production to treat asthma. A novel high-risk high-reward project, designed to achieve affinity maturation in a
test tube, using AID and error-prone human DNA polymerase , is aimed at generating monoclonal Abs
against any antigen. As a proof of principal, we propose to generate Abs against three critical ion channel
receptors involved in pain, heat and cold. The availability of ion channel receptor Abs would provide a major
medical breakthrough to relieve pain and itching in hypersensitive individuals.
概括
所有生物体的生存挑战均来自于环境中自然存在的 DNA 损伤剂,
例如,紫外线辐射和氧气,以及有毒工业化学品的诱导“超突变”。
也许违反直觉,通过确保细胞和
有机适应性,每个碱基对发生频率约为 10-2 – 10-3 的突变,横跨 a
细菌和人类的死亡和健康之间的范围 健康的关键是仔细调节。
我们的资助提案是阐明两种重要的超变酶 DNA 的调节。
大肠杆菌中的聚合酶 V 突变体 (pol V Mut) 可催化受损DNA 的跨损伤合成
强大的免疫反应所需的 DNA 模板和激活诱导的脱氧胞苷脱氨酶 (AID)
在人类中,Pol V Mut 具有多亚基结构,其中包括 RecA 分子、大肠杆菌重组酶和
除了聚合酶活性外,pol V Mut 还具有一种内在的 DNA 依赖性 ATP 酶。
Pol V Mut 的活性与所有其他 ATP 酶不同,存在两种构象不同的状态:激活状态和激活状态。
根据 RecA 的位置失活,我们认为内部 ATP 酶提供能量。
在构象状态之间切换的源,类似于“开关”切换开关,我们建议对此进行测试。
使用 TIRF-FRET 显微镜可视化每个构象之间切换的动态的假设
单分子分辨率下 pol V Mut 的状态,并使用 Cryo-EM 确定每个 pol V 的位置
亚基,最重要的是 RecA,以激活和失活的形式在免疫中发挥着重要作用。
通过在 B 细胞中启动体细胞超突变 (SHM) 和类别转换重组 (CSR) 来响应
在免疫球蛋白可变区 (IgV) 和开关区 (IgS) DNA 转录过程中脱氨 CU。
提议重建第一个生化系统来研究 IgV 和 IgV 期间的 AID 靶向和催化
人 RNA 聚合酶 II 的 IgS 转录本研究旨在为 IgS 转录奠定基础。
产生抗体 (Ab) 多样性所需的超突变反应我们建议使用 TIRF-FRET。
显微镜观察 IgV 和 IgS 转录过程中 AID 的作用,包括蛋白质的影响
据信,AID 参与了针对停滞转录气泡的靶向作用。2016 年,我们获得了一种晶体。
我们现在提出一种获得 AID-ssDNA 共晶环境的策略。
我们将利用共晶结构来设计抑制IgE的AID抑制剂。
治疗哮喘的新型高风险高回报项目,旨在实现亲和力成熟。
试管,使用 AID 和容易出错的人类 DNA 聚合酶 ,旨在产生单克隆抗体
作为原理证明,我们建议生成针对三个关键离子通道的抗体。
涉及疼痛、热和冷的受体 离子通道受体抗体的可用性将提供主要作用。
缓解过敏人群疼痛和瘙痒的医学突破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MYRON GOODMAN其他文献
MYRON GOODMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MYRON GOODMAN', 18)}}的其他基金
DNA Polymerase Fidelity Mechanisms: Theory and Experiment
DNA 聚合酶保真机制:理论与实验
- 批准号:
9326179 - 财政年份:2013
- 资助金额:
$ 31.45万 - 项目类别:
Molecular Mechanisms of Human DNA Polymerase B Catalysis, Fidelity and Selective
人类 DNA 聚合酶 B 催化、保真度和选择性的分子机制
- 批准号:
8591712 - 财政年份:2013
- 资助金额:
$ 31.45万 - 项目类别:
DNA Polymerase Fidelity Mechanisms: Theory and Experiment
DNA 聚合酶保真机制:理论与实验
- 批准号:
8549424 - 财政年份:2013
- 资助金额:
$ 31.45万 - 项目类别:
DNA Polymerase Fidelity Mechanisms: Theory and Experiment
DNA 聚合酶保真机制:理论与实验
- 批准号:
9125787 - 财政年份:2013
- 资助金额:
$ 31.45万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国年轻女性接种不同剂次国产双价HPV16/18疫苗的特异性抗体亲和力及细胞免疫反应研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于酵母展示与自体持续突变的纳米抗体快速亲和力成熟技术研究
- 批准号:82204046
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新抗原受体可变域的赭曲霉毒素A竞争物与VHH抗体互作的亲和力调控机制
- 批准号:32102067
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 31.45万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10371815 - 财政年份:2022
- 资助金额:
$ 31.45万 - 项目类别: