Acid-sensing GPCRs in vascular inflammation and growth
血管炎症和生长中的酸敏感 GPCR
基本信息
- 批准号:9230919
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcidosisAcidsAddressAdhesionsAmericanAnti-Inflammatory AgentsAnti-inflammatoryBiologicalBlood VesselsBlood flowCardiovascular DiseasesCause of DeathCell ProliferationCellsClinicalCyclic AMPCyclic AMP-Dependent Protein KinasesDiseaseElementsFamilyFoundationsFunctional disorderG-Protein-Coupled ReceptorsGPR4 geneGPR68 geneGTP-Binding ProteinsGoalsGrowthHealthIn VitroIndividualInflammationInflammatoryInjuryInterventionKnock-outKnockout MiceKnowledgeLightMetabolicMetabolismMolecularMolecular TargetMorbidity - disease ratePathogenesisPathologicPatientsProcessProtein KinasePublishingResearchResearch DesignResearch Project GrantsRoleSignal TransductionSignaling ProteinTestingTherapeuticTherapeutic InterventionTissuesUnited StatesVascular DiseasesVascular Endothelial CellVascular Smooth Musclearterial remodelingcell motilitycellular targetingclinical investigationclinically significantdisabilitygain of functionin vivoinjuredloss of functionmigrationmortalityneointima formationnovelnovel therapeuticsphosphoric diester hydrolaseresponsesensortargeted treatmentvascular inflammationvascular smooth muscle cell migration
项目摘要
PROJECT SUMMARY/ABSTRACT
Cardiovascular disease (CVD) remains the primary cause of morbidity and mortality in the United
States and worldwide, and key underpinnings in CVD pathogenesis include vascular endothelial cell
(VEC) inflammation and adhesion and abnormal growth of vascular smooth muscle (VSM). In diseased
tissue the local microenvironment becomes acidic from altered cellular metabolism and compromised
blood flow, yet the exact contributions of acidic pH to the disease process and in particular, to VEC and
VSM dysfunction, is potentially significant yet not well understood. Intriguingly, a family of pH-sensing G
protein-coupled receptors (GPCRs) has been identified including GPR4, primarily found in VECs, and
GPR68, predominantly localized to VSM, and recent findings suggest these may be crucial in eliciting
VEC and VSM complications foundational to CVD. The broad goal of this research plan is to determine
precise roles and mechanisms of GPR4 and GPR68 in soliciting pathologic VEC inflammation and
adhesion and VSM growth. This line of study directly addresses the health concerns of CVD and is of
potential clinical importance. The hypothesis of this project is that acidosis activates pH-sensing VEC
GPR4 and VSM GPR68, thereby stimulating cyclic AMP-driven Epac and inhibiting anti-inflammatory and
growth-protective AMPK, in turn promoting VEC inflammation and adhesion and deleterious VSM growth
as foundations of vascular dysfunction in CVD. Using wild type (WT), GPR4 knockout (KO) and GPR68
KO mice and in vitro and in vivo approaches with gain-of-function/loss-of-function interventions to validate
mechanisms, three Specific Aims will test our hypothesis: Aim 1 will examine cellular signals in response
to acidosis including cyclic AMP content, activities of cyclic AMP-dependent protein kinase (PKA) and
cyclic AMP-degrading phosphodiesterase (PDE), and expression and activities of downstream effectors
Epac and metabolic AMP-dependent protein kinase (AMPK). Aim 2 will determine the regulatory impacts
of GPR4 and GPR68 signals on VEC inflammation and adhesion and VSM cell (VSMC) migration and
proliferation, and Aim 3 identify discrete GPR4 or GPR68 processes capable of controlling arterial growth
and remodeling under in vivo conditions. This integrated research design will determine pH-sensing
GPR4 and GPR68 and their intracellular effectors Epac and AMPK as instrumental in VEC inflammation
and adhesion and VSM migration and proliferation elemental to CVD. Anticipated findings promise to
shift our current understanding of vascular cell signaling and will provide new avenues for basic and
clinical investigation with the hopes of identifying novel, more selective targets for therapeutic intervention
in CVD patients.
项目摘要/摘要
心血管疾病(CVD)仍然是统一发病率和死亡率的主要原因
CVD发病机理中的状态和全球和关键基础包括血管内皮细胞
(VEC)血管平滑肌(VSM)的炎症和粘附和异常生长。患病
组织局部微环境因改变的细胞代谢而变成酸性并受到损害
血流,但酸性pH对疾病过程的确切贡献,尤其是对VEC和VEC和
VSM功能障碍是潜在的重要意义,但尚不清楚。有趣的是,一个pH值的家族
已经确定了包括GPR4的蛋白质偶联受体(GPCR),主要在VEC中发现,并且
GPR68,主要定位于VSM,最近的发现表明这些可能在引发至关重要
VEC和VSM并发症基础CVD。该研究计划的广泛目标是确定
GPR4和GPR68的精确作用和机制在征求病理VEC炎症和
粘附和VSM增长。这项研究直接解决了CVD的健康问题,是
潜在的临床重要性。该项目的假设是酸中毒激活了pH值VEC
GPR4和VSM GPR68,从而刺激环状AMP驱动的EPAC并抑制抗炎和
生长保护AMPK,反过来促进VEC炎症和粘附以及有害的VSM增长
作为CVD中血管功能障碍的基础。使用野生型(WT),GPR4淘汰(KO)和GPR68
KO小鼠,体外和体内方法,具有功能障碍/功能丧失干预措施以验证
机制,三个具体目标将检验我们的假设:AIM 1将检查细胞信号以响应
酸中毒包括环状AMP含量,环状AMP依赖性蛋白激酶(PKA)的活性和
环状AMP降解磷酸二酯酶(PDE)以及下游效应子的表达和活性
EPAC和代谢AMP依赖性蛋白激酶(AMPK)。 AIM 2将确定监管影响
关于VEC炎症和粘附以及VSM细胞(VSMC)迁移的GPR4和GPR68信号
扩散,目标3确定能够控制动脉生长的离散GPR4或GPR68过程
并在体内条件下进行重塑。这种集成的研究设计将确定pH值
GPR4和GPR68及其细胞内效应子EPAC和AMPK在VEC炎症中起着作用
以及粘附和VSM迁移以及对CVD的增殖元素。预期的发现有望
转移我们当前对血管细胞信号传导的理解,并将为基本和
临床研究,希望识别新颖,更有选择性的治疗措施
在CVD患者中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID A TULIS其他文献
DAVID A TULIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID A TULIS', 18)}}的其他基金
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7841358 - 财政年份:2009
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7841353 - 财政年份:2009
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7688384 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7413997 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
8079353 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7867858 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
8462423 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7600421 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
NO-independent cGMP regulation of vascular remodeling
血管重塑的不依赖于 cGMP 的调节
- 批准号:
7256661 - 财政年份:2007
- 资助金额:
$ 44.25万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
- 批准号:82330029
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The regulation of renal tubular transport by cannabinoid receptor type 1 (CB1R) and its endogenous lipid ligands
1型大麻素受体(CB1R)及其内源性脂质配体对肾小管转运的调节
- 批准号:
10588113 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10711110 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10522141 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别: