Interplay of Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中过渡金属稳态与活性硫的相互作用
基本信息
- 批准号:9071683
- 负责人:
- 金额:$ 57.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAnti-Bacterial AgentsAntibiotic ResistanceAreaBacteriaBiologicalCellsCommunicable DiseasesCommunitiesCopperCysteineDevelopmentFutureGoalsHealthHomeostasisHumanHydrogen SulfideImmunityInvestigationLifeLinkManganeseMass Spectrum AnalysisMediatingMetalsMicrobial BiofilmsMicrobial PhysiologyMolecularMorbidity - disease rateMulti-Drug ResistanceMycobacterium tuberculosisNitric OxideNitrogen OxidesNosocomial InfectionsNutrientNutritionalOrganismOxidative StressPneumoniaProbabilityProcessProteomeRelaxationResistanceSite-Directed MutagenesisStaphylococcus aureusStreptococcus pneumoniaeStressSulfhydryl CompoundsSulfidesSulfurSulfur Metabolism PathwaySystemToxic effectTranscription Repressor/CorepressorTranscriptional RegulationTransition ElementsVancomycin resistant enterococcusVirulenceWorld Health OrganizationZincantimicrobialbasebiophysical chemistryinsightinterdisciplinary approachinterestmethicillin resistant Staphylococcus aureusnitroxylnovelpathogenprotein transportpublic health relevanceresearch studyrespiratoryresponsetranscriptomics
项目摘要
DESCRIPTION (provided by applicant): Infectious disease is a global threat to human health. The World Health Organization notes a pressing need to develop novel antimicrobial strategies that limit the impact of these life-threatening pathogens. These pathogens include the major causative agents of nosocomial infections, e.g., Staphylococcus aureus, and a major respiratory pathogen responsible for community-acquired pneumonia and morbidity world-wide, Streptococcus pneumoniae. Each is becoming increasingly multidrug-resistant severely complicating treatment options. In this proposal, we seek to integrate our fundamental studies of bacterial transition metal (manganese, copper and zinc) homeostasis, sulfur metabolism and sulfide homeostasis to accelerate the pace of discovery of novel antibacterial strategies. We have long-standing interests in the transcriptional repressors and more recently, metal trafficking proteins, that allow a bacterium to adapt to host-mediated "remodeling" of transition metal availability. We've discovered and structurally characterized new players in this process in M. tuberculosis, S. aureus and S. pneumoniae and have framed our quantitative investigations of these systems as "allosteric inorganic switches" that orchestrate metal homeostasis and resistance to toxicity in cells. These studies led directly to the discovery and ongoing elucidatio of what we anticipate represents a novel, highly specific regulatory response to reactive sulfur species (RSS) and potentially, reactive nitrogen oxide species (nitroxyl; HNO) in S. aureus. We hypothesize that this response impacts the ability of S. aureus and other pathogens to regulate colonization and nitric oxide (NO)-mediated dispersal of biofilms (biofilm dynamics) and resistance to antibiotic-induced oxidative stress. Future studies will be carried out in three general areas: 1) biological characterization and structural/dynamics studies, using state-of-the-art methyl-specific NMR relaxation experiments, of new allosteric systems involved in metalloregulation of transcription and regulation of RSS and RNOS; 2) obtaining new molecular-level insights into copper resistance and manganese homeostasis in S. pneumoniae, and mechanisms of adaptation to extreme zinc limitation induced by host-mediated "nutritional immunity" in Acinetobacter baumannii, and 3) holistically probe the cellular response to sulfide and RNOS stress using transcriptomic, mass spectrometry-based profiling of proteome cysteine thiol oxidative modifications, and targeted metabolite profiling approaches, with the goal to identity new players and mechanisms in this process. Our multidisciplinary approach, which seamlessly spans biophysical chemistry to microbial physiology, enhances the probability of transforming our understanding of fundamental features of transition metal homeostasis linked to virulence and a completely unexplored cellular response to RSS/RNOS in important human pathogens.
描述(由申请人提供):传染病是对人类健康的全球性威胁,世界卫生组织指出迫切需要开发新的抗菌策略来限制这些危及生命的病原体的影响,这些病原体包括医院感染的主要病原体。每种病原体都越来越受到感染,例如金黄色葡萄球菌,以及导致全球社区获得性肺炎和发病的主要呼吸道病原体肺炎链球菌。在这项提案中,我们寻求整合细菌过渡金属(锰、铜和锌)稳态、硫代谢和硫化物稳态的基础研究,以加快发现新型抗菌策略的步伐。我们长期以来对转录抑制因子和最近的金属运输蛋白感兴趣,这些蛋白质使细菌能够适应宿主介导的过渡金属可用性的“重塑”。在结核分枝杆菌、金黄色葡萄球菌和肺炎链球菌中发现并表征了这一过程中的新参与者,并将我们对这些系统的定量研究框架为协调金属稳态和细胞毒性抵抗的“变构无机开关”。直接涉及我们预期的对活性硫物种(RSS)和潜在的活性氮氧化物物种(硝酰基;HNO)的新颖的、高度特异性的监管反应的发现和持续阐明。我们认为,这种反应会影响金黄色葡萄球菌和其他病原体调节定植和一氧化氮 (NO) 介导的生物膜扩散(生物膜动力学)以及对抗生素诱导的氧化应激的抵抗力的能力。三个一般领域:1)利用最先进的甲基特异性核磁共振弛豫实验,对参与转录金属调控和转录调控的新变构系统进行生物表征和结构/动力学研究。 RSS 和 RNOS;2) 获得对肺炎链球菌铜抗性和锰稳态的新分子水平见解,以及鲍曼不动杆菌对宿主介导的“营养免疫”诱导的极端锌限制的适应机制,以及 3) 全面探讨使用基于转录组、质谱分析的蛋白质组半胱氨酸硫醇氧化修饰和靶向代谢物对硫化物和 RNOS 应激的细胞反应我们的多学科方法无缝地涵盖了生物物理化学和微生物生理学,从而提高了我们对与毒力和完全未经探索的过渡金属稳态基本特征的理解的可能性。重要人类病原体中细胞对 RSS/RNOS 的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID P. GIEDROC其他文献
DAVID P. GIEDROC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID P. GIEDROC', 18)}}的其他基金
The role of the ZNG1 metallochaperone in the host response to infection
ZNG1 金属伴侣在宿主感染反应中的作用
- 批准号:
10753132 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10633310 - 财政年份:2019
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10201659 - 财政年份:2019
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Training Program in Quantitative and Chemical Biology at Indiana University Bloomington
印第安纳大学伯明顿分校定量和化学生物学研究生培训项目
- 批准号:
10412039 - 财政年份:2019
- 资助金额:
$ 57.92万 - 项目类别:
Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中的过渡金属稳态和活性硫物种
- 批准号:
10396075 - 财政年份:2016
- 资助金额:
$ 57.92万 - 项目类别:
Transition Metal Homeostasis and Reactive Sulfur Species in Bacterial Pathogens
细菌病原体中的过渡金属稳态和活性硫物种
- 批准号:
10625271 - 财政年份:2016
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
8875021 - 财政年份:2014
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
8667113 - 财政年份:2014
- 资助金额:
$ 57.92万 - 项目类别:
Graduate Program in Quantitative and Chemical Biology at Indiana University Bloom
印第安纳大学布鲁姆分校定量与化学生物学研究生课程
- 批准号:
9306131 - 财政年份:2014
- 资助金额:
$ 57.92万 - 项目类别:
New mechanisms of sulfur sensing and trafficking in Staphylococcus aureus.
金黄色葡萄球菌硫传感和运输的新机制。
- 批准号:
8640194 - 财政年份:2011
- 资助金额:
$ 57.92万 - 项目类别:
相似国自然基金
基于呫吨酮的拟肽抗菌剂设计合成、抗菌活性和分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤真菌群落对典型三唑类抗菌剂的抗药性响应特征和机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
二(苯乙烯基)酮类光敏抗菌剂的设计,合成及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrochemical Catheter for Prevention of Central Line-Associated Bloodstream Infection
用于预防中心静脉导管相关血流感染的电化学导管
- 批准号:
10560927 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别:
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别:
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 57.92万 - 项目类别: