Geostatistical software for spatial and multi-dimensional joinpoint regression analysis of time series of health outcomes
用于健康结果时间序列的空间和多维连接点回归分析的地统计软件
基本信息
- 批准号:9047005
- 负责人:
- 金额:$ 20.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanCancer BurdenCancer ControlCancer Surveillance Research ProgramCaringCessation of lifeCluster AnalysisCodeComputer softwareCongressesCountyCrimeData AggregationData AnalysesDevelopmentDiagnosisEconomic BurdenEvaluationFishesFloridaFutureGrowthHealthHealth SciencesHealth Services ResearchImageryIncidenceIndividualInformation SystemsInternationalInterventionKnowledgeMalignant NeoplasmsMalignant neoplasm of prostateMapsMarketingMethodologyMethodsModelingNoiseOnline SystemsOutcomePaperPatternPeer ReviewPhasePolicy MakerPopulationPreventionProcessProtocols documentationPublic HealthPublicationsRaceRegression AnalysisResearchScanningSeriesSmall Business Innovation Research GrantStagingTechniquesTechnologyTestingTimeTime Series AnalysisUnited States National Institutes of HealthVariantWeightaging populationbaseburden of illnesscancer diagnosiscancer epidemiologyclimate changecostdesigndimensional analysisdisparity reductionhealth dataimprovedinnovationinsightmortalityneoplasm registrynovelprototypepublic health relevancesimulationstatisticssymposiumtheoriestooltrendtrend analysisusabilityuser-friendlyworking group
项目摘要
DESCRIPTION (provided by applicant): Analyzing temporal trends in cancer incidence and mortality rates can provide a more comprehensive picture of the burden of the disease and generate new insights about the impact of various interventions. Join point regression developed by NCI Surveillance Research Program is increasingly used to identify the timing and extent of changes in time series of health outcomes and to project future cancer burden through the prediction of the future number of new cancer cases or deaths. The analysis of temporal trends outside a spatial framework is however unsatisfactory, since it has long been recognized that there is significant variation among U.S. counties and states with regard to the incidence of cancer. It is thus critical to implement join point regression within Geographical Information Systems (GIS), and develop interfaces offering user-friendly tools for pre-processing, modeling, visualizing and summarizing large ensembles of time series of health outcomes. This SBIR project is developing the first commercial software to offer tools for the geostatistical modeling and join point regression analysis of time series of health outcomes. The research product will be a stand-alone module into the desktop space-time visualization core developed by BioMedware, an Esri partner. This software package will provide a comprehensive suite for: 1) the computation and geostatistical noise-filtering (kriging) of time series of health outcomes at various spatial scales (e.g. ZIP codes, counties), 2) the visualization of how the parameters of the regression model (e.g. join point years, Average Annual Percent Change) change in space and across spatial scales, and 3) the analysis of similarities among time series and their aggregation through multi-dimensional scaling and clustering analysis. These tools will be suited for the analysis of data outside health sciences, such as in crime mapping, fish stock assessment or climate change, broadening significantly the commercial market for the end product. This project will accomplish three aims: Conduct simulation-based studies to assess the benefits of: 1) the application of join point regression to smoothed time series (kriging-based
and Bayesian filters) for identifying temporal trends from unstable rates recorded in small geographical units, 2) multi-dimensional scaling to visualize differences among ensemble of time series, and 3) clustering analysis to group geographical units with similar temporal trend. Develop and test a prototype module that will guide users through the creation, join point regression modeling, visualization and multi-dimensional analysis of time series of health outcomes, based on BioMedware's space-time visualization and analysis technology. Conduct a usability study and identify additional methods and tools to consider in Phase II. These technologic, scientific and commercial innovations will revolutionize our ability to detect changes in cancer incidence and mortality across space and through time, bringing important information and knowledge that will benefit substantially cancer epidemiology, control and surveillance and help reducing these disparities.
描述(由适用提供):分析癌症发病率和死亡率的临时趋势可以为疾病的伯恩提供更全面的了解,并就各种干预措施的影响产生新的见解。 NCI监视研究计划开发的JOIN点回归越来越多地用于确定健康结果的时间序列变化的时机和程度,并通过预测未来的新癌症病例或死亡人数来预测未来的癌症伯宁。但是,对空间框架之外的临时趋势的分析并不令人满意,因为长期以来人们已经认识到,在癌症事件中,美国县和州之间存在很大差异。因此,在地理信息系统(GIS)中实施联接点回归并开发界面至关重要,从而为用户友好的工具提供了用于预处理,建模,可视化和总结时间序列的健康结果的大型合奏的工具。该SBIR项目正在开发第一个为地理建模提供工具的商业软件,并加入时间序列的健康结果分析。该研究产品将是由ESRI合作伙伴Biomedware开发的桌面时空可视化核心的独立模块。此软件包将提供一个全面的套件:1)在各种空间量表(例如邮政编码,县)中,健康结果的计算和地列为噪声过滤(KRIGING),2)在空间和跨越时间的分析中,跨度分析的变化以及3)的分析以及3)的可视化,2)在空间变化中的可视化(例如,平均年龄变化)多维缩放和聚类分析。这些工具将适合分析健康科学以外的数据,例如在犯罪制图,鱼类种群评估或气候变化中,大大拓宽了最终产品的商业市场。该项目将实现三个目标:进行基于模拟的研究以评估以下方面的好处:1)连接点回归的应用到平滑时间序列(基于Kriging)。
和贝叶斯过滤器),以识别小地理单元记录的不稳定率的临时趋势,2)多维缩放,以可视化时间序列之间的差异,3)聚类分析到具有相似临时趋势的组地理单位。开发和测试一个原型模块,该模块将基于生物部的时空可视化和分析技术,将指导用户进行创建,连接点回归建模,可视化和多维分析。 进行可用性研究并确定第二阶段中考虑的其他方法和工具。这些技术,科学和商业创新将彻底改变我们检测到跨太空和随着时间的流逝的癌症发病率和死亡率变化的能力,从而带来重要的信息和知识,从而使癌症的流行病学,控制和监视有益,并有助于减少这些分布。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?
- DOI:10.1016/j.scitotenv.2017.02.183
- 发表时间:2017-07-15
- 期刊:
- 影响因子:9.8
- 作者:Goovaerts, Pierre
- 通讯作者:Goovaerts, Pierre
The drinking water contamination crisis in Flint: Modeling temporal trends of lead level since returning to Detroit water system.
弗林特的饮用水污染危机:对返回底特律供水系统后铅含量的时间趋势进行建模。
- DOI:10.1016/j.scitotenv.2016.09.207
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Goovaerts,Pierre
- 通讯作者:Goovaerts,Pierre
How geostatistics can help you find lead and galvanized water service lines: The case of Flint, MI.
地质统计学如何帮助您找到铅和镀锌供水管道:以密歇根州弗林特为例。
- DOI:10.1016/j.scitotenv.2017.05.094
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Goovaerts,Pierre
- 通讯作者:Goovaerts,Pierre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PIERRE E GOOVAERTS其他文献
PIERRE E GOOVAERTS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PIERRE E GOOVAERTS', 18)}}的其他基金
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10468323 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10006357 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10323718 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
9138888 - 财政年份:2013
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
8523583 - 财政年份:2013
- 资助金额:
$ 20.46万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8588323 - 财政年份:2012
- 资助金额:
$ 20.46万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8444188 - 财政年份:2012
- 资助金额:
$ 20.46万 - 项目类别:
Three-dimensional visualization, interactive analysis and contextual mapping of s
三维可视化、交互式分析和上下文映射
- 批准号:
7908050 - 财政年份:2010
- 资助金额:
$ 20.46万 - 项目类别:
SBIR PHASE II- TOPIC 234- AUTOMATED PATTERN RECOGNITION IN SATELLITE IMAGERY
SBIR 第二阶段 - 主题 234 - 卫星图像中的自动模式识别
- 批准号:
7952599 - 财政年份:2009
- 资助金额:
$ 20.46万 - 项目类别:
相似国自然基金
我国城市人群常见癌症所致经济负担及DALY负担评价
- 批准号:81773521
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
中国人口老龄化对癌症流行趋势及负担影响的研究
- 批准号:81602931
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multidimensional structural racism and moderating role of psychosocial resources on cancer-control behaviors in African Americans
多维结构性种族主义和心理社会资源对非裔美国人癌症控制行为的调节作用
- 批准号:
10798610 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Developing and evaluating a mobile application-based intervention to support HPV-tested women and increase their retention to follow-up: a mixed-methods implementation study
开发和评估基于移动应用程序的干预措施,以支持接受 HPV 检测的女性并提高她们的随访率:一项混合方法实施研究
- 批准号:
10740962 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
2023 Annual Conference Grant: American Society of Preventive Oncology
2023年年会资助:美国预防肿瘤学会
- 批准号:
10683559 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Community to Molecular Approaches in Early Screening and Diagnosis to Promote Equitable Outcomes Through the Continuum of Care in Cancer Among Populations of African Ancestry
社区采用分子方法进行早期筛查和诊断,通过对非洲裔人群癌症的持续护理来促进公平结果
- 批准号:
10754038 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
LISTOS for Cancer Control - Leveraging Implementation Science To Optimize Strategies for Cancer Control
LISTOS 用于癌症控制 - 利用实施科学来优化癌症控制策略
- 批准号:
10738709 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别: