Network-based prediction and validation of causal schizophrenia genes and variants
基于网络的精神分裂症致病基因和变异的预测和验证
基本信息
- 批准号:9108677
- 负责人:
- 金额:$ 42.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AllelesBayesian ModelingBiological AssayBrainBrain regionCRISPR/Cas technologyCalciumCandidate Disease GeneCell LineCellsChIP-seqChromatinCommunitiesComputing MethodologiesData SetDevelopmentEnhancersGene ExpressionGene TargetingGenesGeneticHaplotypesHybridsIndividualInvestmentsJointsKnock-outLinkMapsMental disordersMethodsModelingMolecular ConformationNetwork-basedNeurogliaNeuronsPatientsPatternPhenotypeProbabilityRegulator GenesResourcesSchizophreniaSignal TransductionSmall Interfering RNAStagingStatistical ModelsStructureSynapsesSystemTestingTranslatingUntranslated RNAValidationVariantWorkbasecell typeclinically relevantepigenomicsexpectationgenetic variantgenome editinggenome wide association studyinduced pluripotent stem cellknock-downnew therapeutic targetnovelpublic health relevancerisk variantsynaptic functiontargeted sequencingtherapeutic developmenttranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): The recent increase in GWAS discovery power for psychiatric disorders has led to the recognition of an undisputed genetic basis for schizophrenia (SZ). However, the mechanistic basis of the vast majority of these loci remains uncharacterized, hindering the ability to translate genetic findings into novel drug targets and develop new treatments for SZ patients. In this proposal, we overcome these challenges and seek to identify and characterize novel SZ driver genes and causal variants by combining computational and experimental methods, integrating systems-level information to prioritize individual genes and loci, and validating their gene- regulatory and cellular effects in 10 neuronal and 3 glial cell tyes derived from iPS cells. Aim 1: We infer gene co-expression networks and modules using multiple brain regions and developmental stages, and use them to predict schizophrenia driver genes based on their clustering in common networks/modules, and their linking to schizophrenia-associated loci using activity correlation, chromatin conformation and eQTLs. Aim 2: We search for schizophrenia-enriched modules of enhancer regions, discovered by clustering patterns of H3K27ac activity across brain regions, developmental stages, and individuals, using an iterative probabilistic framework for joint prediction of causal driver genes, variants, and regulators. Aim 3: We experimentally validate the gene- regulatory and neuronal/glial cellular phenotypes of predicted schizophrenia driver genes and variants in neuronal and glial cell lines based on targeted sequencing of heterozygous loci overlapping 800 putative driver genes and 10,000 putative causal variants, and systematic profiling of neuronal and glial phenotypes upon knockdown and knockout of 200 candidate genes and bidirectional CRISPR-Cas9 editing of 50 candidate causal variants. If successful, this ambitious proposal has the potential to reveal dozens of new target genes and variants associated with Schizophrenia, and open up new avenues for therapeutic development that may alleviate the personal and societal burden of schizophrenia in our lifetimes.
描述(由适用提供):GWAS发现能力的最新增加导致人们认识到精神分裂症(SZ)无可争议的遗传基础。但是,这些基因座绝大多数的机械基础仍然没有表征,从而阻碍将遗传发现转化为新的药物靶标并为SZ患者开发新的治疗方法。在该提案中,我们克服了这些挑战,并试图通过结合计算和实验方法,集成系统级信息以优先级和基因座,并验证其基因调控和细胞在10个神经细胞类型中衍生自IPS细胞中的基因调控和细胞效应,从而确定和表征新颖的SZ驱动基因和因果变异。 AIM 1:我们使用多个大脑区域和发育阶段推断基因共表达网络和模块,并使用它们根据公共网络/模块中的聚类来预测精神分裂症驱动基因,以及它们与精神分裂症相关的LOCI的链接,使用活性相关,染色素构型和EQTL。 AIM 2:我们在跨大脑区域的H3K27AC活性的聚类模式,发展阶段和个体的聚类模式中搜索增强剂区域的精神分裂症模块,使用迭代概率框架,用于结合因果驱动基因,变体和调节剂的关节预测。 Aim 3: We experimentally validate the gene-regulatory and neuronal/glial cellular phenotypes of predicted schizophrenia driver genes and variants in neuronal and glial cell lines based on targeted sequencing of heterozygous loci overlapping 800 putative driver genes and 10,000 putative causal variants, and systematic profiling of neuronal and glial phenotypes upon knockdown and knockout of 200候选基因和双向CRISPR-CAS9编辑50个候选因果变体。如果成功的话,这项雄心勃勃的提议有可能揭示数十种与精神分裂症相关的新靶基因和变体,并为治疗发展开辟了新的途径,以减轻我们一生中精神分裂症的个人和社交伯恩。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Joseph Daly其他文献
Mark Joseph Daly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Joseph Daly', 18)}}的其他基金
Enhancing gnomAD Sustainability: Implementing Site Reliability Engineering Principles for Genomic Data Infrastructure
增强 gnomAD 可持续性:实施基因组数据基础设施站点可靠性工程原则
- 批准号:
10838180 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
2/4 The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
2/4 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
- 批准号:
10579317 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
The Autism Sequencing Consortium: Autism Gene Discovery in >50,000 Exomes
自闭症测序联盟:在超过 50,000 个外显子组中发现自闭症基因
- 批准号:
9217934 - 财政年份:2017
- 资助金额:
$ 42.42万 - 项目类别:
2/7 Psychiatric Genomics Consortium: Finding Actionable Variation
2/7 精神病基因组学联盟:寻找可行的变异
- 批准号:
9924026 - 财政年份:2016
- 资助金额:
$ 42.42万 - 项目类别:
相似国自然基金
隐伏矿体三维预测不确定性层级传播的层次贝叶斯建模
- 批准号:42302338
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于逆威沙特分布的贝叶斯多元随机波动率建模研究和应用
- 批准号:72373093
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
面向贝叶斯网络建模的地铁建设工程安全风险降低策略研究
- 批准号:72271122
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
面向贝叶斯网络建模的地铁建设工程安全风险降低策略研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
贝叶斯框架下基于变分推理的全波形反演速度建模及不确定性评价方法研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Systematic analysis of functional 3’ UTR genetic variants and their relevance to Alzheimer’s Disease
功能性 3™ UTR 遗传变异及其与阿尔茨海默病的相关性的系统分析
- 批准号:
10344561 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Systematic characterization of cancer variants using single-cell functional genomics
使用单细胞功能基因组学对癌症变异进行系统表征
- 批准号:
10599180 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Upgrading rigor and efficiency of germline cancer gene variant classification for the 2020s
提高 2020 年代种系癌症基因变异分类的严谨性和效率
- 批准号:
10577746 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Systematic characterization of cancer variants using single-cell functional genomics
使用单细胞功能基因组学对癌症变异进行系统表征
- 批准号:
10358184 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Systematic analysis of functional 3’ UTR genetic variants and their relevance to Alzheimer’s Disease
功能性 3™ UTR 遗传变异及其与阿尔茨海默病的相关性的系统分析
- 批准号:
10563224 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别: