Trinity: Transcriptome assembly for genetic and functional analysis of cancer
Trinity:用于癌症遗传和功能分析的转录组组装
基本信息
- 批准号:9126450
- 负责人:
- 金额:$ 66.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-17 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAlternative SplicingAutomobile DrivingBacteriaBioinformaticsCancer BiologyCellsCloud ComputingCodeCommunitiesComputer AnalysisComputer softwareDataData SetDiagnosticDocumentationEducational workshopEmerging TechnologiesEnvironmentEpigenetic ProcessExonsFee-for-Service PlansFundingGalaxyGeneticGenetic HeterogeneityGenetic TranscriptionGenetic VariationGenomeHealthHigh Performance ComputingHumanIndustryInferiorIntronsLeadLettersMalignant NeoplasmsManualsMapsMeasuresMessenger RNAMethodsMicrobeMiningMutationOnline SystemsPatternPerformancePersonsProcessRNARNA EditingRNA SplicingReadingResearchResearch InfrastructureResearch PersonnelResortResourcesSamplingSequence AnalysisServicesShapesSpeedStructureTechnologyThe Cancer Genome AtlasTrainingTraining SupportTranscriptUpdateVariantViralWorkanticancer researchbasecancer cellcancer genomecomputing resourcesdisease diagnosisepigenetic variationimprovedliterature citationmicrobialmicrobiomenew therapeutic targetopen sourcereconstructionreference genomesymposiumtooltranscriptometranscriptome sequencingtranscriptomicstumortumor heterogeneitytumorigenesisuser-friendlyvirome
项目摘要
DESCRIPTION (provided by applicant): RNA-Seq studies indicate that the cancer transcriptome are shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome. 'Assembly first' (de novo) methods that combine reads into transcripts without any mapping are a compelling alternative. The assembled transcriptome can then be used to identify mutations, splicing patterns, expression levels, tumor-associated microbes, and - if collected from single cells - characterize tumor heterogeneity. There is thus an enormous need for computationally efficient, accurate and user friendly tools for transcriptome reconstruction and analysis in cancer. Trinity, first released in mid-2011 and freely
available as Open Source, is the leading software for de novo RNA-Seq assembly, with over 16,000 downloads, 177 literature citations, and a host of modules for downstream analyses, contributed by 3rd party developers. While widely-adopted in the general research community, Trinity (and any de novo RNA-Seq assembly) is only now emerging in the cancer domain. Here, we will enhance and maintain Trinity as a leading tool for cancer transcriptomics. We will tailor analytic modules for critical tasks in cancer biology, working with a network of cancer researchers on Driving Cancer Projects (Aim 1). We will continue to update the Trinity software to enhance the core algorithm, leverage new sequencing technologies as they arise, and incorporate additional 3rd party tools (Aim 2). We will enhance the Trinity software for different computational environments, including user-friendly interfaces to high performance computing infrastructure freely available to any NCI-funded researcher (Aim 3). We will grow the Trinity cancer user community, using online and in- person training and support (Aim 4), to allow any cancer researcher to leverage it.
描述(由申请人提供):RNA-seq研究表明,癌症转录组是由遗传变化,基因转录变化,mRNA加工,编辑和稳定性以及癌症微生物组塑造的。解释这种变化并理解其对肿瘤发生的影响需要复杂的计算分析。大多数RNA-seq分析都依赖于首先映射简短读取为参考基因组的方法,然后将它们与注释的转录本进行比较或组装。但是,当癌症基因组与参考或检测癌症微生物组序列的参考大大不同时,该策略可能会受到限制。组合读取为成绩单而无需任何映射的“从头组装”(从头开始)是令人信服的选择。然后,组装的转录组可用于鉴定突变,剪接模式,表达水平,与肿瘤相关的微生物,如果是从单个细胞中收集的 - 表征肿瘤异质性。因此,迫切需要计算高效,准确和用户友好的工具,用于癌症的转录组重建和分析。三位一体,首次于2011年中期发布,自由发行
作为开源的可用,是从头RNA-seq组装的领先软件,由第三方开发人员贡献了16,000多次下载,177个文献引用和许多用于下游分析的模块。虽然在一般研究界广泛采用了广泛的补充,但Trinity(和任何从头RNA-Seq组装)仅在癌症领域才出现。在这里,我们将增强和维持三位一体作为癌症转录组学的领先工具。我们将针对癌症生物学的关键任务量身定制分析模块,并与癌症研究人员网络一起驱动癌症项目(AIM 1)。我们将继续更新三位一体软件,以增强核心算法,利用新的测序技术出现,并结合其他第三方工具(AIM 2)。我们将增强针对不同计算环境的三位一体软件,包括可自由使用的NCI资助研究人员可免费使用的高性能计算基础架构的用户友好接口(AIM 3)。我们将使用在线和人工培训和支持(AIM 4)来发展Trinity Cancer用户社区,以允许任何癌症研究人员利用它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AVIV REGEV其他文献
AVIV REGEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AVIV REGEV', 18)}}的其他基金
Core B: Data Management and Bioinformatics Core
核心 B:数据管理和生物信息学核心
- 批准号:
10207346 - 财政年份:2017
- 资助金额:
$ 66.45万 - 项目类别:
Clinical implementation of single cell tumor transcriptome analysis
单细胞肿瘤转录组分析的临床实施
- 批准号:
9035651 - 财政年份:2016
- 资助金额:
$ 66.45万 - 项目类别:
DNA microscopy for spatially resolved genomic analyses in intact tissue
DNA 显微镜用于完整组织的空间分辨基因组分析
- 批准号:
9360633 - 财政年份:2016
- 资助金额:
$ 66.45万 - 项目类别:
An integrated multiplexed genomic assay for low input clinical samples1
适用于低输入临床样品的综合多重基因组检测1
- 批准号:
9305830 - 财政年份:2015
- 资助金额:
$ 66.45万 - 项目类别:
Comprehensive Classification Of Neuronal Subtypes By Single Cell Transcriptomics
单细胞转录组学对神经元亚型的综合分类
- 批准号:
8822370 - 财政年份:2014
- 资助金额:
$ 66.45万 - 项目类别:
Comprehensive Classification Of Neuronal Subtypes By Single Cell Transcriptomics
单细胞转录组学对神经元亚型的综合分类
- 批准号:
9324097 - 财政年份:2014
- 资助金额:
$ 66.45万 - 项目类别:
Trinity: Transcriptome assembly for genetic and functional analysis of cancer
Trinity:用于癌症遗传和功能分析的转录组组装
- 批准号:
8606947 - 财政年份:2013
- 资助金额:
$ 66.45万 - 项目类别:
Trinity: Transcriptome assembly for genetic and functional analysis of cancer
Trinity:用于癌症遗传和功能分析的转录组组装
- 批准号:
8735908 - 财政年份:2013
- 资助金额:
$ 66.45万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational tools and resources to study alternative splicing and mRNA isoform variation
研究选择性剪接和 mRNA 亚型变异的计算工具和资源
- 批准号:
10669330 - 财政年份:2022
- 资助金额:
$ 66.45万 - 项目类别:
Methods for improving clinical diagnostic by detection, prediction, interpretation and prioritization of aberrant transcriptome variations
通过异常转录组变异的检测、预测、解释和优先排序来改进临床诊断的方法
- 批准号:
10674723 - 财政年份:2020
- 资助金额:
$ 66.45万 - 项目类别:
Methods for improving clinical diagnostic by detection, prediction, interpretation and prioritization of aberrant transcriptome variations
通过异常转录组变异的检测、预测、解释和优先排序来改进临床诊断的方法
- 批准号:
10451556 - 财政年份:2020
- 资助金额:
$ 66.45万 - 项目类别:
Methods for improving clinical diagnostic by detection, prediction, interpretation and prioritization of aberrant transcriptome variations
通过异常转录组变异的检测、预测、解释和优先排序来改进临床诊断的方法
- 批准号:
10033447 - 财政年份:2020
- 资助金额:
$ 66.45万 - 项目类别:
Informatics Platform for Mammalian Gene Regulation at Isoform-level
异构体水平的哺乳动物基因调控信息学平台
- 批准号:
10273985 - 财政年份:2020
- 资助金额:
$ 66.45万 - 项目类别: