Improving the Accuracy of ASCVD Risk Estimation Using Population-Level EHR and Genetic Data
使用人群水平 EHR 和遗传数据提高 ASCVD 风险评估的准确性
基本信息
- 批准号:10431891
- 负责人:
- 金额:$ 5.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-10-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeApplied ResearchAtherosclerosisBayesian ModelingBayesian NetworkBlood PressureCalibrationCardiovascular DiseasesCaringCause of DeathCenters for Disease Control and Prevention (U.S.)ClinicalDataDevelopmentDiabetes MellitusDisease ProgressionEffectivenessElectronic Health RecordEpidemiologyEquationFamilyFoundationsFutureGeneticGenetic RiskGoalsGuidelinesHealthHealth systemHealthcare SystemsHyperlipidemiaHypertensionInfrastructureLearningLinear ModelsLinkLipidsLogistic RegressionsMapsMedical RecordsMentorsMeta-AnalysisMethodsModelingModernizationMorbidity - disease rateMorphologic artifactsNatural Language ProcessingOnline SystemsPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPharmacotherapyPhenotypePhysiciansPopulationPopulation HeterogeneityPreventive therapyPreventive treatmentPrincipal InvestigatorProbabilityRaceRecommendationRecording of previous eventsResearchRhode IslandRiskRisk EstimateRisk FactorsSNP genotypingSamplingScientistSeriesSingle Nucleotide PolymorphismSmokerSmoking StatusSymptomsTelephoneTestingTimeTrainingUnited StatesWomanWorkadjudicationartificial neural networkbiomedical informaticsblack patientcardiovascular disorder riskcareerclinical practicecohortcomputer sciencedata exchangedata miningdata repositorydisability-adjusted life yearselectronic health record systemgenomic datahealth disparityimprovedmarkov modelmathematical sciencesmortalityopen sourcepatient subsetspolygenic risk scorepopulation basedportabilityrandomized, clinical trialsrecruitrisk predictionself organizationsocial health determinantssuccesstool
项目摘要
SUMMARY
Cardiovascular diseases (CVD) are the leading causes of morbidity and mortality in the United States.
Atherosclerotic cardiovascular disease (ASVD) is the primary mechanism for the development of CVD and is
largely considered preventable by the Center for Disease Control and Prevention. Lipid-lowering therapy is the
current mainstay of preventative treatment for ASCVD and guidelines for pharmacotherapy rely on the 2013
Pooled Cohort Equations (PCE) for estimating 10-year risk. While these equations have been validated at a
population level they have significant shortcomings that impact real-world patient-level effectiveness. These
include implementation (i.e. time and effort for clinicians to enter patient data into a phone or web-based
calculator), therapy changing sensitivity to highly variable inputs (e.g single time point blood pressure),
paradoxical risk estimation for some patient subgroups that are an artifact of linear modeling (e.g. women
smokers), blunt treatment of race (i.e. separately derived equations for black patients), and poor calibration for
modern cohorts (i.e. resulting in the overestimation of risk). This project will attempt to address these
shortcomings. First, portable tools for analyzing electronic health records found within the Rhode Island Health
Information Exchange (HIE) will be developed for the extraction of PCE risk factors to enable the automated
calculation of ASCVD risk. PCE risk factor extraction permutations (e.g. last vs mean blood pressure) will be
optimized and the equations will be calibrated for the population. Next, EHR-system agnostic tools for
extracting additional risk factors available within the medical record including symptom development, social
determinants of health, and family history will be developed. PCE and non-PCE risk factors will be used for
artificial neural network and dynamic Bayesian network modeling of ASCVD risk phenotype clusters to
augment PCE risk prediction. Finally, a single nucleotide polymorphism (SNP) genotype data derived ASCVD
genetic risk score will be integrated with the HIE derived risk factors to demonstrate the potential clinical
implications of implementing an omics-integrated learning healthcare system. The project will serve as
foundational training for the principal investigator towards pursuing a career as a physician-scientist in the field
of biomedical informatics.
Hypothesis: Atherosclerotic cardiovascular disease risk estimation is central to current lipid-lowering therapy
guidelines. This project will test the hypothesis that population-level data-driven methods will improve the
accuracy of risk calculators.
Aim 1: Determine the Predictive Performance of PCE Risk Factors Derived from Longitudinal HIE Data
Aim 2: Define Population-Based ASCVD Risk Phenotype Clusters
Aim 3: Demonstrate HIE-Omics-Integrated Learning Healthcare System with Direct-to-Consumer Sequencing
概括
心血管疾病(CVD)是美国发病率和死亡率的主要原因。
动脉粥样硬化性心血管疾病(ASVD)是 CVD 发生的主要机制,
疾病控制和预防中心基本上认为可以预防。降脂疗法是
当前 ASCVD 预防性治疗的支柱和药物治疗指南依赖于 2013 年
用于估计 10 年风险的合并队列方程 (PCE)。虽然这些方程已在
在人群水平上,它们存在影响现实世界患者水平有效性的重大缺陷。这些
包括实施(即临床医生将患者数据输入电话或网络的时间和精力)
计算器),治疗改变对高度可变输入的敏感性(例如单时间点血压),
对某些患者亚组的矛盾风险估计是线性模型的产物(例如女性
吸烟者)、对种族的生硬对待(即针对黑人患者单独推导的方程)以及对种族的校准不佳
现代队列(即导致风险高估)。该项目将尝试解决这些问题
缺点。首先,罗德岛卫生局发现的用于分析电子健康记录的便携式工具
将开发信息交换(HIE)来提取 PCE 风险因素,从而实现自动化
ASCVD 风险的计算。 PCE 风险因素提取排列(例如最后血压与平均血压)将是
优化并且方程将针对总体进行校准。接下来,EHR 系统不可知工具
提取医疗记录中可用的其他风险因素,包括症状发展、社会
将制定健康的决定因素和家族史。 PCE 和非 PCE 风险因素将用于
ASCVD 风险表型簇的人工神经网络和动态贝叶斯网络建模
增强 PCE 风险预测。最后,得到 ASCVD 的单核苷酸多态性 (SNP) 基因型数据
遗传风险评分将与 HIE 衍生的风险因素相结合,以证明潜在的临床风险
实施组学整合学习医疗保健系统的影响。该项目将作为
为首席研究员提供基础培训,以实现该领域的医师科学家职业生涯
生物医学信息学。
假设:动脉粥样硬化性心血管疾病风险评估是当前降脂治疗的核心
指导方针。该项目将检验以下假设:人口层面的数据驱动方法将改善
风险计算器的准确性。
目标 1:确定从纵向 HIE 数据导出的 PCE 风险因素的预测性能
目标 2:定义基于人群的 ASCVD 风险表型簇
目标 3:通过直接面向消费者的测序展示 HIE-Omics 集成学习医疗保健系统
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron S Eisman其他文献
Aaron S Eisman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron S Eisman', 18)}}的其他基金
Improving the Accuracy of ASCVD Risk Estimation Using Population-Level EHR and Genetic Data
使用人群水平 EHR 和遗传数据提高 ASCVD 风险评估的准确性
- 批准号:
10225340 - 财政年份:2020
- 资助金额:
$ 5.29万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 5.29万 - 项目类别:
Improving Pediatric Emergency Triage: An Assessment of the Emergency Severity Index Using the PECARN Registry (Peds-ESI)
改进儿科急诊分诊:使用 PECARN 注册中心 (Peds-ESI) 评估急诊严重程度指数
- 批准号:
10725931 - 财政年份:2023
- 资助金额:
$ 5.29万 - 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
- 批准号:
10846139 - 财政年份:2023
- 资助金额:
$ 5.29万 - 项目类别:
Multimodal dMRI, MRS and MEG studies of language impairment in low-verbal ASD
低语言 ASD 语言障碍的多模态 dMRI、MRS 和 MEG 研究
- 批准号:
10636420 - 财政年份:2023
- 资助金额:
$ 5.29万 - 项目类别: