Technology Diffusion, Health Outcomes, and Healthcare Expenditures
技术扩散、健康成果和医疗支出
基本信息
- 批准号:9111769
- 负责人:
- 金额:$ 101.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdverse effectsAgeAmputationAnticoagulantsAntidiabetic DrugsAreaAtrial FibrillationBackBedsBeliefBlood GlucoseBlood VesselsCardiacCardiovascular DiseasesCarotid EndarterectomyCategoriesCharacteristicsClinicalCross-Sectional StudiesDataDatabasesDeep Vein ThrombosisDiffuseDiffusionDropsEthnic groupExhibitsExpenditureFee-for-Service PlansGlycosylated hemoglobin AGrowthHealthHealth Care CostsHealth PersonnelHealthcareHemoglobinHospitalsImmunoglobulinsImplantable DefibrillatorsIndividualInfusion proceduresIntensive Care UnitsLinkMarketingMasksMeasuresMedicalMedicareMedicare claimMonitorNeuropathyOperative Surgical ProceduresOutcomePatient SelectionPatientsPatternPharmaceutical PreparationsPhysiciansPopulationProcessProviderPublicationsQuality of CareRaceRegistriesResearchResidenciesRetinal DiseasesRiskSocial NetworkSpeedStentsStructureSubgroupSystemTechnologyTestingVariantadverse outcomebed capacityblood glucose regulationcardiovascular risk factordata registrydiabeticdiabetic patienteffective therapyexperiencefallsillegal behaviormedical schoolsmedical specialtiesorganizational structurerandomized trialrapid growthrosiglitazonesocialtechnology diffusiontreatment group
项目摘要
DESCRIPTION: In previous research wide variations have been found in both healthcare spending and in health outcomes, with little correlation between the two. These studies were limited to cross-sectional analysis, and tell little about the dynamic process by which these patterns arise. One hypothesis is that variation across regions in rates of technology diffusion, whether for highly effective treatments (with a large impact on health outcomes) or for expensive treatments with unknown value (with a large impact on expenditures), can explain the observed cross-sectional patterns of spending and outcomes. In this proposal, Aim 1 seeks to better understand the diffusion of highly effective healthcare such as hemoglobin A1C (HbA1c) tests for blood glucose control among diabetic patients. Using the national Doximity database on every physician in the U.S., along with information about physician-hospital networks (PHN) and physician social networks, the research team will test why HbA1c diffused so rapidly (and among all racial and ethnic groups) in some areas but not others. They will also test whether more rapid diffusion of HbA1c reduced rates of neuropathy, retinopathy, and amputation. Aim 2 focuses on the diffusion of generally beneficial treatments but where the treatment can actually harm specific types of patients. Two examples are considered: the rapid growth in implantable cardioverter defibrillators (ICDs), and the growth in new and expensive anticoagulants - dabigatran, apixaban and rivaroxaban. Aim 3 studies the opposite of diffusion - "exnovation" or a retreat from use - to ask how physician-hospital networks and regions scaled back on treatments newly found to have poor value for subgroups of patients. The proposal considers two specific treatments: the sharp reduction in carotid endarterectomy (both surgery and stents), and the decline in the use of Rosiglitazone (Avandia), an anti-diabetic drug, following a 2007 publication demonstrating serious cardiovascular risks. In these cases, the most effective exnovation patterns should experience the largest drop in use for the less appropriate patients. Aim 4 examines the diffusion of treatments with unknown or even adverse consequences, such as the rapid growth in some regions (but not others) in ICU bed capacity. The research team will study the network and diffusion patterns for "extramedical" treatments - illegal behavior motivated by profit and with no benefit for patients, with one example being the rise and fall of immunoglobulin infusions in 2002-2005. Finally, the research group will use results from these four aims to return to the central hypothesis: can observed differences in treatment-specific diffusion explain observed patterns in regional variations in health outcomes and spending?
描述:在先前的研究中,在医疗保健支出和健康结果中都发现了广泛的变化,两者之间的相关性几乎没有。这些研究仅限于横截面分析,几乎没有说明这些模式出现的动态过程。一个假设是,无论是高度有效的治疗方法(对健康结果的影响很大)还是对具有未知价值的昂贵处理(对支出产生很大影响)的技术扩散率之间的变化,都可以解释观察到的支出和成果的横截面模式。在此提案中,AIM 1试图更好地了解高效医疗保健的扩散,例如血红蛋白A1C(HBA1C)测试糖尿病患者的血糖控制。研究团队将在美国的每位医生中使用国家Doximity数据库,以及有关医师院医院网络(PHN)和医师社交网络的信息,研究团队将测试HBA1C在某些领域(以及某些领域)而不是其他领域而不是其他领域的HBA1C如此迅速地扩散了。他们还将测试HBA1C的更快扩散是否降低了神经病,视网膜病和截肢的速率。 AIM 2的重点是通常有益治疗的扩散,但治疗实际上可能损害特定类型的患者。考虑了两个例子:植入式心脏逆转除颤器(ICD)的快速增长以及新的且昂贵的抗凝剂的生长-Dabigatran,Apixaban和Rivaroxaban。 AIM 3研究扩散的对立面是“分发”或使用的撤退 - 询问医师院网络和区域如何根据新发现的治疗方法缩减对患者亚组的价值较差。该提案考虑了两种特定的治疗方法:颈动脉内膜切除术(手术和支架)的急剧减少,以及在2007年出版的严重心血管疾病风险之后,抗糖尿病药物(一种抗糖尿病药物)的使用(Avandia)的使用下降。在这些情况下,最有效的分发模式应遭受较不合适的患者使用的最大使用情况。 AIM 4检查了具有未知甚至不利后果的治疗的扩散,例如某些地区(但其他地区)在ICU床容量中的迅速增长。研究小组将研究“外部”治疗的网络和扩散模式 - 非法行为是由利润促进的,对患者没有好处,一个例子是2002 - 2005年免疫球蛋白输注的兴衰。最后,研究小组将利用这四个目的的结果来返回中心假设:可以观察到的特定于治疗特异性扩散的差异解释了健康结果和支出的区域变化中观察到的模式吗?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN S SKINNER其他文献
JONATHAN S SKINNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN S SKINNER', 18)}}的其他基金
Technology Diffusion, Health Outcomes, and Healthcare Expenditures
技术扩散、健康成果和医疗支出
- 批准号:
8738583 - 财政年份:2013
- 资助金额:
$ 101.39万 - 项目类别:
Technology Diffusion, Health Outcomes, and Healthcare Expenditures
技术扩散、健康成果和医疗支出
- 批准号:
8628306 - 财政年份:2013
- 资助金额:
$ 101.39万 - 项目类别:
Technology Diffusion, Health Outcomes, and Healthcare Expenditures
技术扩散、健康成果和医疗支出
- 批准号:
9555093 - 财政年份:2013
- 资助金额:
$ 101.39万 - 项目类别:
Causes and Consequences of Variation in Public and Private Payment Rates
公共和私人支付率变化的原因和后果
- 批准号:
10433840 - 财政年份:2001
- 资助金额:
$ 101.39万 - 项目类别:
Causes and Consequences of Health Care Intensity
医疗保健强度的原因和后果
- 批准号:
6637832 - 财政年份:2001
- 资助金额:
$ 101.39万 - 项目类别:
Causes and Consequences of Health Care Intensity
医疗保健强度的原因和后果
- 批准号:
6936452 - 财政年份:2001
- 资助金额:
$ 101.39万 - 项目类别:
Causes and Consequences of Health Care Intensity
医疗保健强度的原因和后果
- 批准号:
6533935 - 财政年份:2001
- 资助金额:
$ 101.39万 - 项目类别:
EFFICIENCY OF PRESCRIPTION DRUG USE IN THE MEDICARE POPULATION
医疗保险人群中处方药的使用效率
- 批准号:
8461340 - 财政年份:2001
- 资助金额:
$ 101.39万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别:
Self-management Intervention for Reducing Epilepsy Burden among Ugandans with Epilepsy
减轻乌干达癫痫患者癫痫负担的自我管理干预措施
- 批准号:
10740917 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别:
Novel behavioral screening tool for therapeutics against organophosphorus agents
用于有机磷药物治疗的新型行为筛选工具
- 批准号:
10631009 - 财政年份:2023
- 资助金额:
$ 101.39万 - 项目类别: