The Boston University-UCLA Lung Cancer Biomarker Development Lab
波士顿大学-加州大学洛杉矶分校肺癌生物标志物开发实验室
基本信息
- 批准号:9277841
- 负责人:
- 金额:$ 56.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-20 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAppearanceBenignBiological MarkersBiologyBlindedBloodBlood CirculationBostonCaliberCancer DetectionCancerousCategoriesCharacteristicsClinicalClinical MarkersDataDevelopment PlansDiagnosticDiscriminationEligibility DeterminationEnvironmentEvaluationGene ExpressionGoalsImageIndividualInjuryLung diseasesLung noduleMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasuresMedicalMessenger RNAMethodsMicroRNAsModalityModelingMolecularMolecular BiologyMolecular ProfilingNasal EpitheliumNoduleNosePatientsPerformancePhysiciansPlasmaPopulationPredictive Cancer ModelPredictive ValueProcessRNARiskSamplingSeriesSmall RNASmokerSolidSpecimenStagingTestingUncertaintyUniversitiesUnnecessary ProceduresValidationVisualX-Ray Computed Tomographybasebiobankbiomarker developmentbronchial epitheliumcancer biomarkerscancer diagnosisclinical practicecohortdesigndisorder riskeconomic costexosomeimaging biomarkerimprovedlung cancer screeningmRNA Expressionmeetingsmolecular imagingmolecular markerpredictive modelingprospectivequantitative imagingsample collectionscreeningtooltranscriptome sequencingtumorvalidation studies
项目摘要
ABSTRACT
With the increasing adoption of computed tomography (CT) as a screening tool for lung cancer, methods
for identifying the small number of patients with malignant nodules from among the large number of patients
with benign CT-detected nodules is a growing and urgent clinical need. We have targeted the problem of
developing biomarkers for detecting malignant solid or part-solid nodules that are 6 – 25 mm in diameter that
are identified by screening at risk individuals or found incidentally in screen-eligible individuals. The ability to
sensitively detect lung cancer in this clinical setting could reduce many of the potentially harmful
consequences that currently arise from uncertainties about which of these indeterminate lung nodules require
the most aggressive workup. The core of our approach is the integration of molecular biomarkers measured
in non-invasively collected nasal brushes and plasma specimens together with complementary imaging and
clinical markers. On the basis of our preliminary data, we will use total RNA sequencing of both large and
small RNA to deeply characterize the cancer-associated airway-wide field of injury in nasal epithelium;
exosome-derived plasma miRNA to capture information about tumor-associated products found in the
circulation; and qualitative and quantitative imaging characteristics to capture information about the biology of
the nodule and the local environment that would otherwise only be available through direct sampling.
Further, we will be profiling these features in several unique cohorts of smokers with indeterminate nodules
detected either incidentally or by screening that represent the clinical population in which most lung cancers
are diagnosed. Our use of biorepositories that have been collected from the clinical settings in which the
biomarker would ultimately be applied, utilizing a prospective-specimen-collection, retrospective-blinded-
evaluation (PRoBE) design minimizes potential bias and improves applicability to the intended use
population. A key aspect of our biomarker development plan is a two-staged feature selection process that
will allow us to efficiently use patient cohorts to detect robustly cancer-associated molecular and imaging
features that will then be used to construct integrated cancer predictive models. The performance and
clinical utility of the resulting models will undergo preliminary validation studies at the end of the proposed
studies. This will allow us to make a GO / NO-GO decision about whether they should be subsequently
tested in larger validation trials based on a rigorous evaluation of their validity and also whether they
represent progress toward our goal of shrinking the intermediate risk category, thereby improving the
diagnostic workup of the large number of patients for whom there is currently considerable clinical
uncertainty.
抽象的
随着越来越多地采用计算机断层扫描 (CT) 作为肺癌筛查工具,方法
用于从大量患者中识别出少数患有恶性结节的患者
通过 CT 检测良性结节是一个日益增长且紧迫的临床需求,我们已针对这一问题进行了解决。
开发用于检测直径为 6 – 25 毫米的恶性实性或部分实性结节的生物标志物
通过筛查有风险的个体来识别或在符合筛查条件的个体中偶然发现的能力。
在这种临床环境中灵敏地检测肺癌可以减少许多潜在的有害因素
目前由于不确定这些不确定的肺结节中哪些需要进行治疗而产生的后果
我们方法的核心是整合测量的分子生物标志物。
在非侵入性收集的鼻刷和血浆样本中以及补充成像和
根据我们的初步数据,我们将使用大RNA和大RNA的总RNA测序。
小RNA可深入表征鼻上皮中与癌症相关的气道范围内的损伤;
外泌体衍生的血浆 miRNA,用于捕获血浆中发现的肿瘤相关产物的信息
循环;以及定性和定量成像特征,以捕获有关生物学的信息。
结核和当地环境,否则只能通过直接采样获得。
此外,我们将在几个具有不确定结节的独特吸烟者群体中分析这些特征
偶然或通过筛查发现的代表大多数肺癌的临床人群
我们使用从临床环境中收集的生物样本库。
最终将利用前瞻性样本收集、回顾性盲法应用生物标记物
评估(PRoBE)设计最大限度地减少潜在偏差并提高对预期用途的适用性
我们的生物标志物开发计划的一个关键方面是一个两阶段的特征选择过程。
将使我们能够有效地利用患者队列来检测与癌症密切相关的分子和成像
然后将用于构建综合癌症预测模型的特征。
由此产生的模型的临床效用将在拟议的研究结束时进行初步验证研究
这将使我们能够做出是否应该随后进行的决定。
在更大规模的验证试验中进行了测试,基于对其有效性的严格评估以及它们是否
我们在缩小中等风险类别的目标方面取得了进展,从而改善了
对目前有大量临床资料的大量患者进行诊断检查
不确定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENISE R. ABERLE其他文献
DENISE R. ABERLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENISE R. ABERLE', 18)}}的其他基金
Integrated Molecular, Cellular, and Imaging Characterization of NLST detected lung cancer
NLST 检测肺癌的综合分子、细胞和成像特征
- 批准号:
10415430 - 财政年份:2021
- 资助金额:
$ 56.57万 - 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
- 批准号:
10307996 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
10225427 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
9982813 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
EFIRM Liquid Biopsy Research Laboratory: Early Lung Cancer Assessment
EFIRM 液体活检研究实验室:早期肺癌评估
- 批准号:
10763321 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
10456340 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
- 批准号:
10055957 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
- 批准号:
10539247 - 财政年份:2018
- 资助金额:
$ 56.57万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10231155 - 财政年份:2016
- 资助金额:
$ 56.57万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10018815 - 财政年份:2016
- 资助金额:
$ 56.57万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 56.57万 - 项目类别:
Development of radiological clips having ultrasound identification
具有超声识别功能的放射线夹的研制
- 批准号:
10493425 - 财政年份:2021
- 资助金额:
$ 56.57万 - 项目类别:
Development of radiological clips having ultrasound identification
具有超声识别功能的放射线夹的研制
- 批准号:
10365578 - 财政年份:2021
- 资助金额:
$ 56.57万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10231155 - 财政年份:2016
- 资助金额:
$ 56.57万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10018815 - 财政年份:2016
- 资助金额:
$ 56.57万 - 项目类别: