High-throughput methods for elucidating the control of chromatin accessibility
阐明染色质可及性控制的高通量方法
基本信息
- 批准号:9066734
- 负责人:
- 金额:$ 74.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-13 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:Access to InformationBase PairingBase SequenceBindingBinding ProteinsCellsChromatinChromatin ModelingCodeComputer SimulationControlled VocabularyDNADNA LibraryDNA SequenceDNase I hypersensitive sites sequencingDataEctopic ExpressionEngineeringEnhancersEtiologyGenomeGenomicsGenotypeGoalsHealthHumanHuman GenomeIndividualInstructionKnock-outLearningLibrariesLocationMachine LearningMapsMeasuresMethodsModelingOligonucleotidesPancreasProteinsRegenerative MedicineRegulationRegulatory ElementResolutionRoleTestingTimeVariantVocabularyWorkbasebiological systemscell injurycell typecombinatorialdesignembryonic stem cellgain of functiongenetic regulatory proteingenome editinggenome sequencinggenome wide association studygenome-wideimprovedloss of functionnoveloverexpressionphrasespredictive modelingprogramspromoterrelating to nervous systemresponsestem cell differentiationsyntaxsynthetic constructtranscription factorwhole genome
项目摘要
DESCRIPTION (provided by applicant): We will develop the first validated predictive model of how transcription factors dynamically determine genome-wide chromatin accessibility that is generalizable across biological systems. We will accomplish this goal with three specific aims. We will develop novel Genome Syntax to Regulation (GSR) models that accurately learn a genomic regulatory vocabulary and predict how phrases in this vocabulary control chromatin accessibility (Aim 1). As part of this aim we will identify transcription factor binding motifs tha are in the discovered regulatory vocabulary. We will validate and refine the causality of these models by testing whether they accurately predict the chromatin accessibility of thousands of synthetic DNA "phrases" that have been engineered into specific genomic locations and measured in the context of transcription factor gain-of-function and loss-of-function studies. The phrases will be designed to elucidate both the factors and grammar that control chromatin opening in several distinct cellular states (Aim 2). We will use our predictive models to assign importance scores to individual genome bases and to predict how selected factors alter chromatin accessibility genome wide (Aim 3). We will test the ability of our importance scores to identify regulatory SNPs in the context of human genome-wide association study (GWAS) data, and we will validate model predictions of changes in whole genome chromatin accessibility in response to ectopic factor expression. Through computational modeling of the effect of such ectopic factor expression, we will develop a predictive understanding of how transcription factors alter chromatin state, laying the groundwork for a novel regenerative medicine paradigm of predictive cellular programming.
描述(由适用提供):我们将开发第一个经过验证的预测模型,即转录因子如何动态确定跨基因组染色质的可及性,该模型可在生物系统中推广。我们将以三个特定的目标来实现这一目标。我们将开发新的基因组语法(GSR)模型,这些模型可以准确地学习基因组调节词汇,并预测该词汇控制染色质访问性中的短语如何(AIM 1)。作为此目的的一部分,我们将确定转录因子结合基序是在发现的调节词汇中。我们将通过测试它们是否准确地预测已设计为特定基因组位置的数千个合成DNA“短语”的染色质可及性来验证和完善这些模型的因果关系,并在转录因子功能获得的功能丧失和功能丧失研究的背景下进行测量。这些短语将旨在阐明控制染色质在几个不同的细胞状态下打开的因子和语法(AIM 2)。我们将使用我们的预测模型将重要性得分分配给单个基因组碱基,并预测所选因子如何改变染色质访问性基因组范围(AIM 3)。我们将在人类全基因组关联研究(GWAS)数据的背景下测试重要性得分鉴定调节性SNP的能力,并将验证对生态因子表达的整个基因组染色质可及性变化的模型预测。通过对这种异位因子表达的效果的计算模型,我们将对转录因子如何改变染色质状态的预测理解,为新颖的预测性细胞编程范式奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David K Gifford其他文献
David K Gifford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David K Gifford', 18)}}的其他基金
Machine learning optimized autoimmune therapeutics with a focus on Type 1 Diabetes
机器学习优化自身免疫疗法,重点关注 1 型糖尿病
- 批准号:
10697204 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别:
Deep learning based antibody design using high-throughput affinity testing of synthetic sequences
使用合成序列的高通量亲和力测试进行基于深度学习的抗体设计
- 批准号:
10116306 - 财政年份:2018
- 资助金额:
$ 74.85万 - 项目类别:
Deep learning based antibody design using high-throughput affinity testing of synthetic sequences
使用合成序列的高通量亲和力测试进行基于深度学习的抗体设计
- 批准号:
10362725 - 财政年份:2018
- 资助金额:
$ 74.85万 - 项目类别:
High-Throughput Native Context Mapping and Modeling of Regulatory DNA
监管 DNA 的高通量本地上下文映射和建模
- 批准号:
9350382 - 财政年份:2016
- 资助金额:
$ 74.85万 - 项目类别:
High-throughput methods for elucidating the control of chromatin accessibility
阐明染色质可及性控制的高通量方法
- 批准号:
8861021 - 财政年份:2015
- 资助金额:
$ 74.85万 - 项目类别:
High-throughput methods for elucidating the control of chromatin accessibility
阐明染色质可及性控制的高通量方法
- 批准号:
9267524 - 财政年份:2015
- 资助金额:
$ 74.85万 - 项目类别:
Integrated Genome Discovery at Single Base Pair Resolution
单碱基对分辨率的综合基因组发现
- 批准号:
9041894 - 财政年份:2012
- 资助金额:
$ 74.85万 - 项目类别:
Integrated Genome Discovery at Single Base Pair Resolution
单碱基对分辨率的综合基因组发现
- 批准号:
8546274 - 财政年份:2012
- 资助金额:
$ 74.85万 - 项目类别:
Integrated Genome Discovery at Single Base Pair Resolution
单碱基对分辨率的综合基因组发现
- 批准号:
8402454 - 财政年份:2012
- 资助金额:
$ 74.85万 - 项目类别:
Integrated Genome Discovery at Single Base Pair Resolution
单碱基对分辨率的综合基因组发现
- 批准号:
8701330 - 财政年份:2012
- 资助金额:
$ 74.85万 - 项目类别:
相似国自然基金
通过分子链“配对混合”调控立构复合聚乳酸熔体稳定性的基础研究
- 批准号:52373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
父本选配对尾叶桉F1杂种优势的遗传基础研究
- 批准号:31600545
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the functional impact of genetic variants in the human proteome
研究人类蛋白质组中遗传变异的功能影响
- 批准号:
10715585 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别:
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
- 批准号:
10889519 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别:
DNA sequence selectivity in conventional and aberrant V(D)J recombination
常规和异常 V(D)J 重组中的 DNA 序列选择性
- 批准号:
10586433 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别:
HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
- 批准号:
10675341 - 财政年份:2023
- 资助金额:
$ 74.85万 - 项目类别: