Innate activation and death signals in health and disease

健康和疾病中的先天激活和死亡信号

基本信息

  • 批准号:
    9058473
  • 负责人:
  • 金额:
    $ 57.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This transformative research proposal extends from my discovery that embryonic lethality in caspase 8 (Casp8)-deficient mice the result of unleashed RIP3 necrosis. Casp8-/-Rip3-/- mice develop into viable, fertile and immunocompetent adults that retain positive innate signaling through NF-kappaB and other factors, but lack detrimental apoptosis and necrosis pathways associated with inflammatory disease, autoimmunity and oncogenesis, prompting the question, "What benefit(s) comes from life in the absence of extrinsic cell death pathways and how can this be harnessed in the clinic"? The developmental dysregulation suggested benefits might be gained in areas as diverse as tissue engraftment and nuclear reprogramming. Surprisingly, Casp8-/- Rip3-/- mice are immunocompetent but tolerate engraftment with mismatched bone marrow. Casp8-/-Rip3-/- cells support nuclear reprogramming with dramatically improved efficiency. In addition, Casp8-/-Rip3-/- mice exhibit resistance to inflammatory cancer. The Challenge is to retain positive mechanisms of innate signaling and eliminate deleterious consequences of dysregulation through genetic manipulation, and then to translate these findings into therapeutic interventions that improve tissue repair and regeneration. We propose to investigate genetic deficiency together with small molecule inhibitors of Casp8 protease and RIP3 kinase to improve tissue transplantation and nuclear reprogramming. The Innovation has begun to emerge. Inflammatory disease and ischemia-reperfusion damage is reduced and allograft transplantation is dramatically improved in the absence of Casp8 and RIP3 kinase. Casp8-/-Rip3-/- mice fail to respond to inflammatory insult sufficient to kill WT mice. Fibroblasts from these mice reprogram into induced pluripotent stem cells (iPSCs) with dramatically improved efficiencies. Additional high impact findings will emerge with genetic knock-out mice as well as with small molecule inhibitor, improving reprogramming of mouse, rhesus and human fibroblasts to iPSCs and/or therapeutically important somatic cell progenitors. The Impact will come from existing and expected innovations, ranging from genetic elimination detrimental cell death in mice, to the use of powerful genetic and therapeutic strategies on rhesus and human cells. Through parallel genetic and small molecule therapeutic intervention, this knowledge will move towards practical clinical applications, with the important involvement of expert consultants in these medically relevant areas. Starting with mouse models, I will: (1) improve tissue regeneration, (2) optimize allogeneic engraftment, and (3) enhance nuclear reprogramming, establishing a new paradigm by eliminating extrinsic apoptosis without the disadvantage of triggering necrosis. The knowledge gained through these studies will be transformative in current tissue repair and transplantation approaches, and will revolutionize future regenerative medicine strategies.
描述(由申请人提供):这项变革性研究提案源于我的发现,即 Caspase 8 (Casp8) 缺陷小鼠的胚胎致死性是释放的 RIP3 坏死的结果。 Casp8-/-Rip3-/- 小鼠发育成可存活、可生育且具有免疫功能的成年小鼠,它们通过 NF-κB 和其他因子保留积极的先天信号传导,但缺乏与炎症性疾病、自身免疫和肿瘤发生相关的有害细胞凋亡和坏死途径,这引发了一个问题: “在没有外在细胞死亡途径的情况下,生命会带来什么好处?如何在临床中利用这一点”?发育失调表明,组织移植和核重编程等多种领域可能会获益。令人惊讶的是,Casp8-/- Rip3-/- 小鼠具有免疫活性,但能够耐受不匹配骨髓的植入。 Casp8-/-Rip3-/- 细胞支持核重编程,效率显着提高。此外,Casp8-/-Rip3-/- 小鼠表现出对炎性癌症的抵抗力。面临的挑战是保留先天信号传导的积极机制,并通过基因操作消除失调的有害后果,然后将这些发现转化为改善组织修复和再生的治疗干预措施。我们建议与 Casp8 蛋白酶和 RIP3 激酶的小分子抑制剂一起研究遗传缺陷,以改善组织移植和核重编程。创新已经开始显现。在缺乏 Casp8 和 RIP3 激酶的情况下,炎症性疾病和缺血再灌注损伤会减少,同种异体移植也会得到显着改善。 Casp8-/-Rip3-/- 小鼠无法对足以杀死 WT 小鼠的炎症损伤作出反应。这些小鼠的成纤维细胞重新编程为诱导多能干细胞 (iPSC),效率显着提高。基因敲除小鼠以及小分子抑制剂将出现更多具有重大影响的发现,改善小鼠、恒河猴和人类成纤维细胞向 iPSC 和/或治疗上重要的体细胞祖细胞的重编程。影响将来自现有的和预期的创新,从基因消除小鼠中有害的细胞死亡,到对恒河猴和人类细胞使用强大的遗传和治疗策略。通过并行遗传和小分子治疗干预,这些知识将在这些医学相关领域的专家顾问的重要参与下走向实际的临床应用。从小鼠模型开始,我将:(1)改善组织再生,(2)优化同种异体植入,(3)增强核重编程,通过消除外源性细胞凋亡而建立新的范例,而不会引发坏死。通过这些研究获得的知识将对当前的组织修复和移植方法产生变革,并将彻底改变未来的再生医学策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

EDWARD S. Edward S Mocarski其他文献

EDWARD S. Edward S Mocarski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('EDWARD S. Edward S Mocarski', 18)}}的其他基金

3-D Culture Models
3-D 文化模型
  • 批准号:
    9978700
  • 财政年份:
    2019
  • 资助金额:
    $ 57.44万
  • 项目类别:
Benefits of Eliminating Cell Death Pathways in Health and Disease
消除细胞死亡途径对健康和疾病的好处
  • 批准号:
    8766753
  • 财政年份:
    2014
  • 资助金额:
    $ 57.44万
  • 项目类别:
Cell Death Pathways in Cytomegalovirus Pathogenesis and Control
巨细胞病毒发病机制和控制中的细胞死亡途径
  • 批准号:
    8813786
  • 财政年份:
    2014
  • 资助金额:
    $ 57.44万
  • 项目类别:
Pathogen-Host Standoff: Persistent and Latent Infection
病原体与宿主的对峙:持续性和潜伏性感染
  • 批准号:
    7002084
  • 财政年份:
    2005
  • 资助金额:
    $ 57.44万
  • 项目类别:
Transplant Arteriosclerosis: Viral and Host Mechanism
移植动脉硬化:病毒和宿主机制
  • 批准号:
    6654372
  • 财政年份:
    2001
  • 资助金额:
    $ 57.44万
  • 项目类别:
Transplant Arteriosclerosis: Viral and Host Mechanism
移植动脉硬化:病毒和宿主机制
  • 批准号:
    6369310
  • 财政年份:
    2001
  • 资助金额:
    $ 57.44万
  • 项目类别:
Transplant Arteriosclerosis: Viral and Host Mechanism
移植动脉硬化:病毒和宿主机制
  • 批准号:
    6913602
  • 财政年份:
    2001
  • 资助金额:
    $ 57.44万
  • 项目类别:
Transplant Arteriosclerosis: Viral and Host Mechanism
移植动脉硬化:病毒和宿主机制
  • 批准号:
    6760866
  • 财政年份:
    2001
  • 资助金额:
    $ 57.44万
  • 项目类别:
Transplant Arteriosclerosis: Viral and Host Mechanism
移植动脉硬化:病毒和宿主机制
  • 批准号:
    6534351
  • 财政年份:
    2001
  • 资助金额:
    $ 57.44万
  • 项目类别:
LATENCY AND REACTIVATION OF CYTOMEGALOVIRUS AFTER BONE MARROW TRANSPLANTATION
骨髓移植后巨细胞病毒的潜伏期和重新激活
  • 批准号:
    6395682
  • 财政年份:
    2000
  • 资助金额:
    $ 57.44万
  • 项目类别:

相似国自然基金

ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
  • 批准号:
    82303993
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
  • 批准号:
    82371567
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
  • 批准号:
    82302868
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
  • 批准号:
    82302829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
  • 批准号:
    10638404
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
Stem Cell Integral Membrane Transporter ABCB5 and Dermal Regeneration
干细胞整体膜转运蛋白 ABCB5 和真皮再生
  • 批准号:
    10494660
  • 财政年份:
    2022
  • 资助金额:
    $ 57.44万
  • 项目类别:
Stem Cell Integral Membrane Transporter ABCB5 and Dermal Regeneration
干细胞整体膜转运蛋白 ABCB5 和真皮再生
  • 批准号:
    10707397
  • 财政年份:
    2022
  • 资助金额:
    $ 57.44万
  • 项目类别:
The effect of donor age on the function and therapeutic efficacy of human hepatocyte-like cells
供者年龄对人肝细胞样细胞功能及治疗效果的影响
  • 批准号:
    10674009
  • 财政年份:
    2021
  • 资助金额:
    $ 57.44万
  • 项目类别:
The effect of donor age on the function and therapeutic efficacy of human hepatocyte-like cells
供者年龄对人肝细胞样细胞功能及治疗效果的影响
  • 批准号:
    10646093
  • 财政年份:
    2021
  • 资助金额:
    $ 57.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了