Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
基本信息
- 批准号:9173829
- 负责人:
- 金额:$ 34.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:4-Aminobutyrate aminotransferaseAction PotentialsAffectAnatomyAnimalsAreaArray tomographyAutistic DisorderAxonBrainCerebral cortexCerebrumCharacteristicsCognitiveCortical SynchronizationDataDemyelinating DiseasesDevelopmental CourseDiseaseElectrophysiology (science)EquilibriumExperimental Autoimmune EncephalomyelitisFiberGenerationsHumanIndividualInterneuronsInvestigationIon ChannelKnowledgeLearningLengthMeasurementMental disordersModelingModificationMolecularMultiple SclerosisMusMyelinMyoepithelial cellNervous system structureNeuronsParvalbuminsPathologyPatternPharmaceutical PreparationsPharmacotherapyPhysiologicalPlayProcessPropertyProteinsPublished CommentRoleSchizophreniaSensory DeprivationSourceSpeedStimulusSynapsesSynaptic TransmissionThickTimeVigabatrinbarrel cortexbasecell typedensityexcitatory neuronexperiencegamma-Aminobutyric Acidgray matterhippocampal pyramidal neuroninformation processinginhibitor/antagonistmouse modelmyelinationnervous system disorderneural circuitneuronal circuitryneurotransmissionnovelphysical propertypostsynaptic neuronsrelating to nervous systemresponsesomatosensorysynaptic inhibitionwhite matter
项目摘要
Axonal myelination of interneurons in cortex: functional significance and plasticity
The speed and efficiency of impulse conduction in myelinated fibers is clearly fundamental to component
density and functional powers of the human nervous system. There is also growing evidence that changes in
myelination can have profound effects on the function of local brain circuits, including synchrony of neuronal
activity and the interaction of neural oscillators. Myelin is most often thought of in association with the
processes of long-axon projection neurons. But recently, we have discovered that the locally-projecting,
relatively short-axon inhibitory interneurons are a major source of myelinated axons within cortical gray matter,
in contrast to the myelin in white matter that forms almost exclusively on the axons of long-distance projecting
excitatory neurons. In particular, interneuronal myelin appears to be confined to interneurons containing the
protein parvalbumin.
Synaptic inhibition is a central feature of neuronal networks. In cortex, numerous types of inhibitory
interneurons participate in regulating the excitatory/inhibitory balance, in neuronal synchronization and cortical
rhythms generation, and in plasticity associated with experience and learning. Even though axonal myelination
defines crucial properties of neuronal transmission, it has not been specifically studied in cortical interneurons.
Furthermore, pathologies of both the cortical inhibitory circuitry and of myelin are associated with many
neurological and mental disorders, including multiple sclerosis, schizophrenia, and autism. Our present
knowledge of myelination in the cortical gray matter, and in particular the myelination of inhibitory axons, is
limited and certainly must be augmented if we are to conquer such devastating disorders.
This proposal is based on a novel combination of electrophysiology and array tomography that delivers
functional, structural and molecular data on individual neurons or pairs of synaptically connected neurons. The
project will begin by investigating myelinated axons of parvalbumin positive basket cells and correlating their
structural organization and molecular composition with the electrophysiological properties of their action
potential discharge and resulting synaptic transmission onto target pyramidal neurons. Once such a baseline
has been established, the contribution of axonal myelination of parvalbumin interneurons to the plasticity of
neuronal circuits will be assessed using barrel cortex sensory deprivation as a model. The project will conclude
with a study of the pathological changes of interneuronal myelination in a mouse model of multiple sclerosis.
This proposal will provide much needed data regarding the organization of myelin of cortical interneurons, the
functional consequences and the plasticity of this organization, and its potential role in multiple sclerosis.
皮层中间神经元的轴突髓鞘化:功能意义和可塑性
髓鞘纤维中脉冲传导的速度和效率显然是成分的基础
人类神经系统的密度和功能能力。越来越多的证据表明
髓鞘化可能会对局部脑电路的功能产生深远影响,包括神经元的同步
活性和神经振荡器的相互作用。髓鞘最常被认为与
长轴投影神经元的过程。但是最近,我们发现本地项目,
相对较短的抑制性中间神经元是皮质灰质中髓鞘轴突的主要来源,
与白质中的髓磷脂相反,几乎完全在长距离投影的轴突上形成
兴奋性神经元。特别是,神经元髓磷脂似乎仅限于包含的中间神经元
蛋白质白蛋白。
突触抑制是神经元网络的主要特征。在皮层中,多种类型的抑制作用
中间神经元参与调节兴奋性/抑制平衡,神经元同步和皮质
节奏产生,以及与经验和学习相关的可塑性。即使轴突髓鞘
定义了神经元传播的关键特性,在皮质中间神经元中尚未专门研究它。
此外,皮质抑制回路和髓磷脂的病理学都与许多
神经和精神障碍,包括多发性硬化症,精神分裂症和自闭症。我们的礼物
对皮质灰质的髓鞘形成的了解,尤其是抑制性轴突的髓鞘形成是
如果我们要征服这种毁灭性的疾病,则有限,当然必须增加。
该建议基于电生理学和阵列断层扫描的新型组合
在单个神经元或成对的突触连接神经元的功能,结构和分子数据。这
项目将首先调查白蛋白蛋白阳性篮细胞的髓鞘轴突并将其关联
其作用的电生理特性的结构组织和分子组成
潜在的放电和导致的突触传播到靶锥体神经元。一旦这样的基线
已经建立了白细胞蛋白中间神经元的轴突髓鞘形成对可塑性的贡献
神经元电路将以桶状皮质感觉剥夺作为模型进行评估。该项目将得出结论
通过研究多发性硬化症的小鼠模型中神经元髓鞘的病理变化。
该建议将提供有关皮质中间神经元髓鞘组织的急需数据,
功能后果和该组织的可塑性及其在多发性硬化症中的潜在作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vernon Daniel MADISON其他文献
Vernon Daniel MADISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vernon Daniel MADISON', 18)}}的其他基金
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
10626677 - 财政年份:2022
- 资助金额:
$ 34.6万 - 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9315233 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9898469 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Single synapse analysis of synaptic plasticity by combining electrophysiology and array tomography
结合电生理学和阵列断层扫描的突触可塑性单突触分析
- 批准号:
10059263 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Single-Synapse Analysis of Neocortical Circuit Plasticity
新皮质回路可塑性的单突触分析
- 批准号:
8842414 - 财政年份:2011
- 资助金额:
$ 34.6万 - 项目类别:
相似国自然基金
泛素E3连接酶接头蛋白SPOP控制离子通道KCNQ1蛋白稳定性影响心肌细胞复极化的机制研究
- 批准号:81800301
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
磁场对神经元动作电位产生与传导的影响
- 批准号:51507046
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
钙钟和膜钟对窦房结自律性的影响及与房性心律失常相互作用的机制
- 批准号:81271661
- 批准年份:2012
- 资助金额:69.0 万元
- 项目类别:面上项目
心脏再同步化治疗对失同步化心衰左心室电生理重构的影响
- 批准号:81100126
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
L型钙离子通道的不同亚型在生理状态和尼古丁成瘾状态下对于腹侧被盖区多巴胺细胞放电行为的影响及其机制
- 批准号:31000483
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9315233 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9898469 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Non-vesicular GABA release via GABA transporter reversal
通过 GABA 转运蛋白逆转释放非囊泡 GABA
- 批准号:
7752778 - 财政年份:2002
- 资助金额:
$ 34.6万 - 项目类别:
Non-vesicular GABA release via GABA transporter reversal
通过 GABA 转运蛋白逆转释放非囊泡 GABA
- 批准号:
7388533 - 财政年份:2002
- 资助金额:
$ 34.6万 - 项目类别:
Non-vesicular GABA release via GABA transporter reversal
通过 GABA 转运蛋白逆转释放非囊泡 GABA
- 批准号:
7572873 - 财政年份:2002
- 资助金额:
$ 34.6万 - 项目类别: