Disrupting Biofilm Formation to Improve TB Drug Treatment
破坏生物膜形成以改善结核病药物治疗
基本信息
- 批准号:8830914
- 负责人:
- 金额:$ 49.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-10 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAdoptedAdverse effectsAffinityAffinity ChromatographyAntibioticsBacillus (bacterium)BacteriaBacterial AdhesinsBindingBiochemical PathwayBiological AssayBiological TestingCaviaCellsChemicalsChronicCombined Modality TherapyCommunicable DiseasesCommunitiesComplexConfocal MicroscopyCoupledCytolysisDataDiseaseDrug CombinationsDrug TargetingDrug ToleranceDrug resistanceEffectivenessEnhancersFluorescenceGene MutationGenerationsGranulomaGrowthHealthHumanImmune responseIn VitroInfectionLeadLeukocytesLibrariesLigandsLung InflammationMetabolic PathwayMicrobial BiofilmsModelingMolecularMolecular ProbesMolecular WeightMycobacterium smegmatisMycobacterium tuberculosisNecrosisPathologyPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhenotypePopulationPreclinical Drug EvaluationPredispositionProteinsPseudomonas aeruginosaReagentRecurrent diseaseResearchSeriesSurfaceTestingTherapeuticTissuesTuberculosisTween 80Virulence Factorsantimicrobialantimicrobial drugbasedesigndrug withdrawalexperienceextracellularimprovedin vitro Assayin vivoinhibitor/antagonistinnovationisoniazidmacromoleculemicrobial communitynovelpreventresponsetherapeutic targettranslational studytreatment strategytuberculosis drugstuberculosis treatment
项目摘要
DESCRIPTION (provided by applicant): Infection with Mycobacterium tuberculosis (Mtb) results in chronic inflammation of the lung and other tissues, which is difficult to treat with current tuberculosis (TB) drugs. The challenge to effectively curing patients with active TB is due to the persistence of drug-tolerant bacilli sequestered in granulomas with caseous necrosis or cavitation. Existing treatment regimes that are often complicated by toxic side effects consist of months or years of combination antimicrobial drugs, which are deemed necessary to effectively eradicate drug-tolerant bacilli. We propose a novel TB treatment strategy, targeting drug-tolerant Mtb using a class of small molecular weight, anti-biofilm compounds to be combined with conventional TB drugs. This strategy could significantly improve the efficacy of current TB drug therapy by more rapidly eradicating, persistent, drug-tolerant bacilli. Our in vitr and in vivo data show that Mtb forms extracellular, biofilm-like microbial communities as a strategy to survive TB drug therapy. From studying the Guinea pig TB model we determined that these drug-tolerant bacilli adopt the biofilm-like mode of existence when associated with lysed or necrotic leukocytes. To mimic this unique in vivo microenvironment we developed a novel in vitro assay in which extracellular, biofilm-like communities of Mtb are cultured on an attachment matrix derived from lysed human leukocytes. Similar to what is seen in vivo, our data show that Mtb expresses extreme in vitro drug tolerance, which is reversed by anti-biofilm drugs, rendering bacilli again susceptible to TB drugs. Our data show that these novel compounds disperse or inhibit the formation of biofilms formed by a variety of bacteria including M. smegmatis and increases the susceptibility of Mtb to isoniazid. The effectiveness of this strategy will be further tested using our in vitro Mtb drug tolerance assay to show 1) anti-biofilm
compounds disperse and inhibit the formation of Mtb biofilm-like communities in vitro and 2) that combining anti-biofilm compounds with TB drugs effectively eradicates drug-tolerant Mtb associated with host-derived macromolecules. We will then determine whether combining anti-biofilm and TB drugs in the Guinea pig Mtb infection model is more effective at eliminating drug- tolerant Mtb than TB or biofilm drugs alone. In a series of mechanistic studies, we will use biotinylated, anti- biofilm compounds as molecular probes to identify Mtb specific virulence factors unique to the drug-tolerant phenotype. By determining the identity of Mtb adhesins or protein intermediates of metabolic pathways unique to drug-tolerant Mtb, additional compounds will be designed, synthesized and tested for biological activity. Successful completion of these highly innovative, translational studies will establish the feasibility of using anti- biofilm compounds as adjunct therapy to treat chronic Mtb in conjunction with existing TB drugs. We will also determine if anti-biofilm compounds combined with TB drugs are more effective at targeting drug-tolerant bacilli compared to TB drugs alone. Finally, we will reveal the mechanisms of action of our current anti-biofilm compounds and the identity of other druggable targets unique to drug-tolerant Mtb.
描述(申请人提供):结核分枝杆菌(Mtb)感染会导致肺部和其他组织的慢性炎症,目前的结核病(TB)药物难以治疗。有效治愈活动性结核病患者面临的挑战是由于耐药杆菌持续存在于干酪样坏死或空洞的肉芽肿中。现有的治疗方案往往因毒副作用而复杂化,包括数月或数年的联合抗菌药物,这被认为是有效根除耐药杆菌所必需的。我们提出了一种新的结核病治疗策略,使用一类小分子量抗生物膜化合物与常规结核病药物相结合,针对耐药结核分枝杆菌。该策略可以通过更快地根除持久性耐药杆菌来显着提高当前结核病药物治疗的疗效。我们的体外和体内数据表明,结核分枝杆菌形成细胞外、生物膜样微生物群落,作为结核病药物治疗中生存的策略。通过研究豚鼠结核病模型,我们确定这些耐药杆菌在与裂解或坏死的白细胞相关时采用生物膜样存在模式。为了模拟这种独特的体内微环境,我们开发了一种新颖的体外测定,其中细胞外的生物膜样结核分枝杆菌群落在源自裂解的人类白细胞的附着基质上培养。与体内观察到的情况类似,我们的数据显示,结核分枝杆菌在体外表现出极端的药物耐受性,抗生物膜药物可以逆转这种耐受性,使杆菌再次对结核病药物敏感。我们的数据表明,这些新型化合物可以分散或抑制由耻垢分枝杆菌等多种细菌形成的生物膜的形成,并增加结核分枝杆菌对异烟肼的敏感性。该策略的有效性将使用我们的体外 Mtb 药物耐受性测定进行进一步测试,以显示 1) 抗生物膜
化合物在体外分散并抑制 Mtb 生物膜样群落的形成,2) 将抗生物膜化合物与结核病药物相结合,可有效根除与宿主衍生大分子相关的耐药 Mtb。然后,我们将确定在豚鼠 Mtb 感染模型中联合使用抗生物膜和 TB 药物是否比单独使用 TB 或生物膜药物更能有效消除耐药 Mtb。在一系列机制研究中,我们将使用生物素化的抗生物膜化合物作为分子探针来识别耐药表型特有的 Mtb 特异性毒力因子。通过确定 Mtb 粘附素或耐药 Mtb 独特代谢途径的蛋白质中间体的身份,将设计、合成其他化合物并测试其生物活性。这些高度创新的转化研究的成功完成将确立使用抗生物膜化合物作为辅助疗法与现有结核病药物联合治疗慢性结核分枝杆菌的可行性。我们还将确定抗生物膜化合物与结核病药物联合使用是否比单独使用结核病药物更有效地靶向耐药杆菌。最后,我们将揭示我们目前的抗生物膜化合物的作用机制以及耐药结核分枝杆菌特有的其他可药物靶标的身份。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall J Basaraba其他文献
Randall J Basaraba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall J Basaraba', 18)}}的其他基金
Therapeutic Restoration of Metabolic Homeostasis During Active TB
活动性结核病期间代谢稳态的治疗性恢复
- 批准号:
8773050 - 财政年份:2014
- 资助金额:
$ 49.36万 - 项目类别:
Disrupting Biofilm Formation to Improve TB Drug Treatment
破坏生物膜形成以改善结核病药物治疗
- 批准号:
8660630 - 财政年份:2013
- 资助金额:
$ 49.36万 - 项目类别:
Disrupting Biofilm Formation to Improve TB Drug Treatment
破坏生物膜形成以改善结核病药物治疗
- 批准号:
9270476 - 财政年份:2013
- 资助金额:
$ 49.36万 - 项目类别:
Disrupting Biofilm Formation to Improve TB Drug Treatment
破坏生物膜形成以改善结核病药物治疗
- 批准号:
9062377 - 财政年份:2013
- 资助金额:
$ 49.36万 - 项目类别:
Disrupting Biofilm Formation to Improve TB Drug Treatment
破坏生物膜形成以改善结核病药物治疗
- 批准号:
8554550 - 财政年份:2013
- 资助金额:
$ 49.36万 - 项目类别:
Prevention of oxidative stress decreases persistence of drug tolerant M. Tubercu
预防氧化应激可降低耐药结核分枝杆菌的持久性
- 批准号:
7712314 - 财政年份:2009
- 资助金额:
$ 49.36万 - 项目类别:
Prevention of oxidative stress decreases persistence of drug tolerant M. Tubercu
预防氧化应激可降低耐药结核分枝杆菌的持久性
- 批准号:
7897739 - 财政年份:2009
- 资助金额:
$ 49.36万 - 项目类别:
相似国自然基金
肿瘤微环境多层次调控的功能化纳米佐剂用于增强膀胱癌放疗疗效的机制研究
- 批准号:82303571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
双重生物响应性自佐剂聚多肽载体构建高效mRNA癌症疫苗
- 批准号:52373299
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型免疫调节复合佐剂的机制研究及在疫苗开发中的应用
- 批准号:82341039
- 批准年份:2023
- 资助金额:95 万元
- 项目类别:专项基金项目
皮内接种抗原佐剂复合疫苗跨器官诱导呼吸道黏膜免疫反应
- 批准号:82341042
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
相似海外基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 49.36万 - 项目类别:
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 49.36万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 49.36万 - 项目类别:
Vaccination responses in lung transplant recipients
肺移植受者的疫苗接种反应
- 批准号:
10428024 - 财政年份:2022
- 资助金额:
$ 49.36万 - 项目类别:
Theranostic system for targeted, sustained-delivery with quantitative "hot spot" MPI of magnetic extracellular vesicles
通过磁性细胞外囊泡定量“热点”MPI 进行靶向、持续递送的治疗诊断系统
- 批准号:
10708939 - 财政年份:2022
- 资助金额:
$ 49.36万 - 项目类别: