In-vivo circuit activity measurement at single cell, sub-threshold resolution

单细胞体内电路活动测量,亚阈值分辨率

基本信息

  • 批准号:
    8935946
  • 负责人:
  • 金额:
    $ 50.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-26 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Neurons communicate information through fluctuations in the electrical potentials across their cellular membranes. Whole-cell patch clamping, the gold standard technique for measuring these fluctuations, is something of an art form, requiring great skill to perform on only a few cells per day. Thus, it has been primarily limited to in vitro experiments, a few in vivo experiments, and very limited applications in the awake brain. Dr. Forest (and collaborator Dr. Boyden at MIT) developed a robot that automatically performs patch clamping in the living brains of mice by algorithmically detecting cells through analysis of a temporal sequence of electrode impedance changes. Using it, they have demonstrated good yield, throughput, and quality of recording in mouse cortex and hippocampus. With this 'autopatching' robot enabling routine access to electrical and molecular properties of neurons, systematic and scalable in vivo experiments as well as fundamentally new kinds of single-cell analyses have become possible. In the past 12 months, the team has installed 15 autopatchers in academic research laboratories, garnered worldwide media coverage, and led to Dr. Forest's and Dr. Boyden's invitations to President Barack Obama's announcement of the BRAIN Initiative. There are currently no published experiments demonstrating in vivo intracellular recordings of two or more neurons that are synaptically connected. We propose to utilize the autopatcher to target anatomically well-studied sub-circuits to significantly increase the odds of identifying synaptically connected pairs. Specifically, we wil utilize the thalamocortical circuit in the mouse vibrissa/whisker pathway as a model experimental system, where there is a substantial convergence of projections from the thalamus to the input layer in the somatosensory (tactile) cortex. The Stanley Laboratory has extensive experience with stimulation and electrophysiological recordings in this circuit, and is one of only a few laboratories that has successfully recorded from synaptically connected pairs of neurons using extracellular techniques. Thus we aim to demonstrate and characterize the first simultaneous intracellular recording of a functional circuit in the anesthetized and awake living mouse brain to reveal its neural network dynamics. In this 36 month program, the labs of Prof. Stanley and Forest, supported by two postdoctoral researchers, two graduate research assistants, a research engineer and five undergraduates, with assistance from ten graduate students working on related projects, will develop single (Aim 1) and dual (Aim 2,3) autopatching robots for the anesthetized and awake brain. Success will allow, for the first time, quantification of synaptic efficacy in the living brain, crucial for understanding normal and pathological function. Just as molecular biology has greatly benefited from the revolution in in vitro automation, we believe that neuroscience will greatly benefit from the revolution in in vivo automation that we have launched, and here propose to extend.
 描述(应用程序提供):神经元通过其细胞机制的电势的波动来传达信息。全细胞贴片夹具是测量这些波动的金标准技术,是一种艺术形式,需要每天只能在几个单元格上执行的精湛技巧。这主要仅限于体外实验,一些体内实验,并且在清醒大脑中的应用非常有限。 Forest博士(MIT的Boyden博士和合作者)开发了一个机器人,该机器人通过分析临时电极阻抗变化的临时序列来自动执行小鼠活体大脑中的斑块夹紧。使用它,他们在小鼠皮质和海马中表现出良好的产量,吞吐量和记录质量。借助这种“自动捕获”机器人,可以常规地访问神经元的电气和分子特性,体内实验的系统和可扩展性,以及从根本上进行新型的单细胞分析。在过去的12个月中,该团队在学术研究实验室中安装了15名自动捕捞者,获得了全球媒体报道,并导致了Forest博士和博伊登博士的邀请,向巴拉克·奥巴马(Barack Obama)总统宣布了《大脑倡议》。目前尚无公开的实验证明了两种或多个突触连接的神经元的体内细胞内记录。我们建议利用自动捕获器靶向解剖学上良好的子电路,以显着增加识别突触连接对的几率。具体而言,我们将利用小鼠颤音/晶须途径中的丘脑皮质回路作为模型实验系统,在该系统中,从丘脑到体感(触觉)皮质的输入层的项目大量收敛。斯坦利实验室在该电路中具有丰富的刺激和电生理记录的经验,并且是唯一的 使用细胞外技术从合成连接的神经元对成功记录的一些实验室。我们旨在证明和表征在麻醉和清醒的小鼠大脑中功能电路的第一个简单的细胞内记录,以揭示其神经元网络动力学。在这个36个月的计划中,斯坦利和森林教授的实验室在两名博士后研究人员,两名研究生研究助理,一名研究工程师和五名本科生的支持下,在从事相关项目的十个研究生的帮助下,将开发单个(AIM 1)和Dual(AIM 2,3)(AIM 2,3)为麻醉和Awake设置的机器人进行自动匹配机器人。成功将首次允许活大脑中的突触效率数量,这对于理解正常和病理功能至关重要。正如分子生物学从体外自动化的革命中受益匪浅一样,我们相信神经科学将从我们发起的体内自动化革命中受益匪浅,并在这里提出扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Forest其他文献

Craig Forest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Forest', 18)}}的其他基金

Automated cell-type-specific electrophysiology for understanding circuit dysregulation in Alzheimer's Disease
自动化细胞类型特异性电生理学用于了解阿尔茨海默氏病的电路失调
  • 批准号:
    10525870
  • 财政年份:
    2022
  • 资助金额:
    $ 50.25万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
  • 批准号:
    10752053
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
Neuronal mechanisms of model-based learning
基于模型的学习的神经机制
  • 批准号:
    10722261
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了