Early risk assessment through mathematical modeling of quantitative placental anatomic/structural biomarkers
通过定量胎盘解剖/结构生物标志物的数学模型进行早期风险评估
基本信息
- 批准号:8927423
- 负责人:
- 金额:$ 13.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:Abruptio PlacentaeAddressAlgorithmsAnatomyBackBasic ScienceBiological MarkersBirthChromosome abnormalityChronicClinicalClinical MarkersComputer softwareCounselingDataDatabasesDescriptorDifferential EquationDiscipline of obstetricsEducational workshopEvaluationExhibitsFetal GrowthFetal Growth RetardationFoundationsFunctional disorderFutureGestational DiabetesGoalsGrowthGynecologyHealthHistopathologyHousingImageIndividualInflammationInvestigationJavaLicensingMathematicsMeasurementMeasuresMeta-AnalysisMethodsModelingMorphologyNational Institute of Child Health and Human DevelopmentNew YorkOutcomePatientsPatternPennsylvaniaPlacentaPre-EclampsiaPregnancyPregnancy ComplicationsPregnancy HistoriesPregnancy OutcomePremature Rupture Fetal MembranesPreventionResearchRiskRisk AssessmentSamplingShapesSiteSurfaceTechnologyThickTimeTranslatingUltrasonographyUniversitiesValidationVascularizationVisionWashingtonadverse outcomeclinical applicationcomputer sciencedigitalevidence basefetalflexibilityimprovedmathematical modelmeetingsmodel developmentmodels and simulationnovelnovel strategiespregnancy hypertensionprenatalprogramsprototypepublic health relevancesimulationtool
项目摘要
DESCRIPTION (provided by applicant): Placental measures of roundness, cord insertion centrality, volume, shape, and thickness are biomarkers of maternal-fetal growth. Deviations from expected placental morphology even as early as 11-14 weeks are related to placental dysfunction and pregnancy complications such as preeclampsia, pregnancy hypertension, gestational diabetes mellitus, and fetal chromosomal defects. The common occurrence of these deviations reveals the need for mathematical models to quantify deviations in placental morphology and assess risk of adverse pregnancy outcomes early in pregnancy. To meet this need, we have assembled a leading team of experts in placental morphology, mathematics, computer science, and obstetrics and gynecology to 1) develop and 2) validate mathematical models that predict placental dysfunction and pregnancy complications from placental morphology measurements obtained early in pregnancy. The algorithm will be developed from a large database comprised of 3D ultrasound placental images from pregnancies with known outcomes providing objective criterion in which "healthy" and potentially "at risk" patterns of placental growth can be established. A prototype for clinical software will be advanced to house the proposed models, allow for inputting of individual patient data, and generate estimates for increased risk for adverse outcomes thereby indicating patients for further investigation. The proposed models will classify individualized pregnancy risks providing a foundation for a personalized plan to manage each pregnancy.
描述(由适用提供):胎盘度量,绳索插入中心,体积,形状和厚度是母亲生长的生物标志物。即使早在11-14周之前,与预期的位置形态的偏差也与位置功能障碍和妊娠并发症有关,例如先兆子痫,妊娠高血压,妊娠糖尿病和胎儿染色体缺陷。这些离开的常见发生表明,需要数学模型来量化妊娠早期不良怀孕结局的占地形态和评估风险。为了满足这一需求,我们组建了一个领先的专家团队,专家专家,数学,计算机科学,妇产科和妇科学专家进行了1)发展和2)验证数学模型,这些模型可预测可预测怀孕早期获得的位置形态学测量值。该算法将从大型数据库中开发,该数据库完成了来自怀孕者的3D超声波式图像,其已知结果提供了客观标准,其中可以建立“健康”和潜在的“处于风险”的状态。将提出一个针对临床软件的原型,以容纳提出的模型,允许输入个别患者数据,并为增加不良结果的风险增加估计,从而表明患者进行进一步研究。拟议的模型将对个性化的怀孕风险进行分类,为管理每种怀孕的个性化计划提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn M Salafia其他文献
Carolyn M Salafia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn M Salafia', 18)}}的其他基金
Contribution of maternal immune activation, viral infection and epigenetics to autism--a community-based case control study
母体免疫激活、病毒感染和表观遗传学对自闭症的影响——基于社区的病例对照研究
- 批准号:
10658499 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别:
Placental shape features, gestational timing and maternal and infant health
胎盘形状特征、妊娠时机与母婴健康
- 批准号:
8124736 - 财政年份:2011
- 资助金额:
$ 13.51万 - 项目类别:
Placental Pathology: Digital Assessment and Validation
胎盘病理学:数字评估和验证
- 批准号:
7749593 - 财政年份:2009
- 资助金额:
$ 13.51万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 13.51万 - 项目类别: