A Macrophage Cation Channel in Prevention and Recovery from Inflammatory Injury
巨噬细胞阳离子通道在炎症损伤预防和恢复中的作用
基本信息
- 批准号:8733411
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATF2 geneAddressAdoptive Cell TransfersAdoptive TransferAlternative SplicingAnimal ModelAnti-Inflammatory AgentsAnti-inflammatoryAutoimmune DiseasesAutoimmune ProcessBiochemicalBone MarrowBrainCalciumCalcium OscillationsCardiacCaringCationsCell TherapyCellsChronicChronic DiseaseClinicalCouplesCyclic AMPDataDiseaseEndosomesExperimental Autoimmune EncephalomyelitisFrequenciesGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGenomicsGoalsHome environmentHumanImmuneIn VitroInflammationInflammatoryInjuryKnock-in MouseLaboratoriesLeadLesionLymphocyte FunctionMediatingModelingMultiple SclerosisMultiple Sclerosis LesionsMusNeurologicNodulePathway interactionsPatientsPhagocytesPhagocytosisPharmaceutical PreparationsPhenotypePreventionProcessPropertyProteinsProteomicsRNA SplicingRecoveryRegulationResearchResolutionRoleServicesSignal PathwaySignal TransductionSiteSodium ChannelSpinal CordSpinal Cord LesionsSymptomsT-LymphocyteTechniquesTestingTherapeuticTherapeutic EffectTissuesTransgenesTransgenic MiceTransgenic OrganismsTreatment ProtocolsVariantVeteransWild Type MouseWorkbasecell typecentral nervous system injurycostdisabilityin vivoinnovationintercellular communicationmacrophagemolecular imagingmouse modelnovelnovel strategiesorganelle movementpolarized cellpotassium ionpreventprotein expressionpublic health relevancerelease of sequestered calcium ion into cytoplasmrepairedresearch studyselective expressionsodium iontranscription factorvoltageyoung adult
项目摘要
DESCRIPTION (provided by applicant):
Existing therapies for autoimmune and inflammatory diseases have minimal effects on resolution and recovery from chronic injury. There is also a fundamental gap in understanding how macrophages regulate cellular phenotype to mediate either injury or repair. The long-term goal is to develop treatments that prevent and reverse chronic inflammatory injury. Using a combination of cellular, genomic, proteomic and in vivo approaches, a novel splice variant of the human sodium channel gene, SCN5A, has been identified as a central regulator of anti-inflammatory macrophage signaling. This splice variant encodes a novel, endosomal cation channel that couples intracellular calcium flux to downstream signaling and gene transcription. Because this splice variant is not expressed in mice, a transgenic knock-in model, the C57BL6cfms-hSCN5A mouse, was developed to study its in vivo function in macrophages. Transfer of bone marrow derived macrophages from these mice mediates clinical recovery in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). The objective of this study is to characterize the SCN5A signaling network in macrophages and determine how it regulates clinical recovery in the EAE model of chronic inflammatory disease. The central hypothesis is that persistent expression of SCN5A in macrophages initiates and maintains a cellular phenotype that enhances recovery from inflammatory injury. The rationale for this study is that understanding this mechanism will lead to innovative approaches to prevent and treat chronic inflammatory disease. The hypothesis will be tested in two specific aims: 1. Determine how the SCN5A variant cation channel regulates macrophage phenotype. 2. Analyze how SCN5A+ macrophages mediate recovery during EAE. Based on preliminary data, the working model is that endosomal channel activity mediates short-term biochemical signaling and long-term gene expression patterns that determine and maintain cellular phenotype. In Aim 1, channel-dependent regulation of cytosolic calcium, cyclic AMP, and activating transcription factor 2 (ATF2) pathways will be examined. The experimental approaches will include a combination of existing biochemical, imaging and molecular techniques in mouse and human primary macrophages. In Aim 2, the EAE model will be utilized to assess this pathway in vivo and determine how SCN5A+ macrophages mediate recovery from inflammatory injury. In vivo gene and protein expression will be analyzed and correlated with in vitro assessment of SCN5A regulation of macrophage vesicular secretion and intercellular communication. The proposed work is innovative because it represents a new approach to regulate macrophage function and treat chronic inflammatory disease. It is significant because promotion of recovery in MS and other chronic inflammatory diseases represents an unmet therapeutic need.
描述(由申请人提供):
现有的自身免疫性和炎症性疾病的疗法对慢性损伤的分辨率和恢复的影响最小。理解巨噬细胞如何调节细胞表型以介导损伤或修复方面还有一个根本的差距。长期目标是开发预防和逆转慢性炎症损伤的治疗方法。 使用细胞,基因组,蛋白质组学和体内方法的组合,已经将人类钠通道基因的新型剪接变体SCN5A鉴定为抗炎巨噬细胞信号的中心调节剂。这种剪接变体编码了一种新型的内体阳离子通道,该通道将细胞内钙通量耦合到下游信号传导和基因转录。由于这种剪接变体未在小鼠中表达,因此开发了转基因敲入模型C57BL6CFMS-HSCN5A小鼠,以研究其在巨噬细胞中的体内功能。从这些小鼠中衍生的巨噬细胞的转移在多发性硬化症(MS)的实验自身免疫性脑脊髓炎(EAE)模型中介导了临床恢复。这项研究的目的是表征巨噬细胞中SCN5A信号网络,并确定它如何调节慢性炎性疾病模型中的临床恢复。 中心假设是巨噬细胞中SCN5A的持续表达启动并保持细胞型,从而增强了从炎症损伤中恢复。这项研究的理由是,了解这种机制将导致预防和治疗慢性炎症性疾病的创新方法。该假设将以两个具体的目的进行检验:1。确定SCN5A变体阳离子通道如何调节巨噬细胞表型。 2。分析SCN5A+巨噬细胞如何介导EAE期间的恢复。 基于初步数据,工作模型是内体通道活性介导了确定和维持细胞表型的短期生化信号传导和长期基因表达模式。在AIM 1中,将检查胞质钙,环状AMP和激活转录因子2(ATF2)途径的通道依赖性调节。实验方法将包括小鼠和人类原代巨噬细胞中现有的生化,成像和分子技术的结合。在AIM 2中,将利用EAE模型在体内评估该途径,并确定SCN5A+巨噬细胞如何介导从炎症损伤中恢复。体内基因和蛋白质表达将分析并与SCN5A调节巨噬细胞分泌和细胞间通信的体外评估相关。 拟议的工作具有创新性,因为它代表了一种调节巨噬细胞功能和治疗慢性炎症性疾病的新方法。这很重要,因为促进MS和其他慢性炎症性疾病的恢复代表了未满足的治疗需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D CARRITHERS其他文献
MICHAEL D CARRITHERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D CARRITHERS', 18)}}的其他基金
Human Macrophage Sodium Channels: Novel Targets for Inflammatory Diseases
人巨噬细胞钠通道:炎症性疾病的新靶点
- 批准号:
8196324 - 财政年份:2010
- 资助金额:
-- - 项目类别:
A Macrophage Cation Channel in Prevention and Recovery from Inflammatory Injury
巨噬细胞阳离子通道在炎症损伤预防和恢复中的作用
- 批准号:
9259894 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Human Macrophage Sodium Channels: Novel Targets for Inflammatory Diseases
人巨噬细胞钠通道:炎症性疾病的新靶点
- 批准号:
8391532 - 财政年份:2010
- 资助金额:
-- - 项目类别:
A Macrophage Cation Channel in Prevention and Recovery from Inflammatory Injury
巨噬细胞阳离子通道在炎症损伤预防和恢复中的作用
- 批准号:
9519646 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Regulation of susceptibility and severity of inflammatory diseases of the central nervous system by novel innate immune signaling pathways in human myeloid cells
通过人骨髓细胞中新型先天免疫信号通路调节中枢神经系统炎症性疾病的易感性和严重程度
- 批准号:
9888928 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Regulation of susceptibility and severity of inflammatory diseases of the central nervous system by novel innate immune signaling pathways in human myeloid cells
通过人骨髓细胞中新型先天免疫信号通路调节中枢神经系统炎症性疾病的易感性和严重程度
- 批准号:
10057220 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Human Macrophage Sodium Channels: Novel Targets for Inflammatory Diseases
人巨噬细胞钠通道:炎症性疾病的新靶点
- 批准号:
8597334 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Regulation of susceptibility and severity of inflammatory diseases of the central nervous system by novel innate immune signaling pathways in human myeloid cells
通过人骨髓细胞中新型先天免疫信号通路调节中枢神经系统炎症性疾病的易感性和严重程度
- 批准号:
10412923 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Regulation of susceptibility and severity of inflammatory diseases of the central nervous system by novel innate immune signaling pathways in human myeloid cells
通过人骨髓细胞中新型先天免疫信号通路调节中枢神经系统炎症性疾病的易感性和严重程度
- 批准号:
10516089 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Human Macrophage Sodium Channels: Novel Targets for Inflammatory Diseases
人巨噬细胞钠通道:炎症性疾病的新靶点
- 批准号:
7928446 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Defining the role of ligand spatial organization in T cell signaling with DNA origami
用 DNA 折纸定义配体空间组织在 T 细胞信号传导中的作用
- 批准号:
10680089 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Time-lapse Flow Cytometry for Kinetic Profiling of T-Cell Function
用于 T 细胞功能动力学分析的延时流式细胞术
- 批准号:
10699148 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Design of a Novel Nanocarrier Technology to Drug-Load CAR T cells
用于载药 CAR T 细胞的新型纳米载体技术的设计
- 批准号:
10734365 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Decoding and reprogramming T cells through synthetic biology for cancer immunotherapy
通过合成生物学解码和重编程 T 细胞用于癌症免疫治疗
- 批准号:
10568704 - 财政年份:2023
- 资助金额:
-- - 项目类别: