Decoding and reprogramming T cells through synthetic biology for cancer immunotherapy

通过合成生物学解码和重编程 T 细胞用于癌症免疫治疗

基本信息

  • 批准号:
    10568704
  • 负责人:
  • 金额:
    $ 77.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Engineered T cell-based cancer therapies are a major advancement in cancer treatment; however the majority of cancers still do not respond to adoptive cellular therapy. We need to “design” new T cell therapies with increased potency, and we need to overcome cell dysfunction that occurs as T cells face chronic tumor antigen stimulation. We and others have screened for genes that can be “knocked out” in antigen-specific T cells to enhance their functions, but enormous opportunities still remain to “knock-in” new synthetic DNA sequences at targeted genome sites. This proposal is focused on detailed evaluation of genes and inducible gene programs that will enable next-generation cellular therapies for cancer. We have developed several complementary technologies to discover synthetic gene programs that can be “inserted” into T cell genomes to enhance therapeutic functions. We developed a CRISPR technology for high throughput pooled knock-ins to accelerate discovery of synthetic knock-in programs (Roth et al., Cell, 2020), and have now have conducted two screens with ~100-member libraries that include transcription factors and synthetic chimeric receptors (“switch receptors”) to discover programs that make chronically stimulated T cells resistant to dysfunction. In addition, we have optimized a complementary robust platform for genome-wide CRISPR activation (CRISPRa) gain-of-function forward genetic screens in human T cells, and have already completed systematic discovery of factors that regulate stimulation-dependent cytokine production (Schmidt and Steinhart et al., Science, 2022). We propose to translate insights from these high-throughput discovery efforts into preclinical testing of novel knock-in designs with screen hits in vivo using xenotransplanted mouse models. In this proposal, we will test validated candidates from gain-of-function CRISPR PoKI (Aim 1) and CRISPRa (Aim 2) screens to discover new components of knock-in constructs that improve cell-based T cell therapies. We also recognize that these genetic components may be more beneficial if they are not expressed constitutively. In Aim 3, we draw on the power of synthetic biology to engineer synthetic circuits that can induce or repress genetic programs in response to antigen stimulation. This precise and dynamic regulation of genetic elements has great potential to further enhance efficacy and safety of next-generation immune cell therapies. Taken together, we present a proposal that leverages recent discoveries from CRISPR discovery platforms and deep expertise in synthetic biology to engineer powerful “knock-in” circuits that we will validate and study in preclinical cancer models. We leverage functional genomics, CRISPR engineering and synthetic cell program design expertise to address insufficient T cell potency and T cell dysfunction, which remain significant barriers to adoptive cell therapy for cancer.
抽象的 基于工程化 T 细胞的癌症疗法是癌症治疗的一项重大进步; 的癌症仍然对过继细胞疗法没有反应,我们需要“设计”新的 T 细胞疗法。 效力增加,我们需要克服 T 细胞面对慢性肿瘤抗原时发生的细胞功能障碍 我们和其他人筛选了可以在抗原特异性 T 细胞中“敲除”的基因。 增强它们的功能,但仍然存在巨大的机会来“敲入”新的合成 DNA 序列 该提案的重点是基因和诱导基因程序的详细评估。 这将使下一代癌症细胞疗法成为可能。我们已经开发了几种互补的方法。 发现可“插入”T 细胞基因组以增强功能的合成基因程序的技术 我们开发了一种用于高通量基因敲入的 CRISPR 技术,以实现治疗功能。 加速合成敲入程序的发现(Roth 等人,Cell,2020),并且现已进行 两次筛选,包含约 100 个成员的文库,其中包括转录因子和合成嵌合体 受体(“开关受体”)来发现使长期刺激的 T 细胞产生抵抗力的程序 此外,我们还优化了用于全基因组 CRISPR 的互补强大平台。 人类T细胞的功能获得性前向遗传筛选,并已完成 系统地发现调节刺激依赖性细胞因子产生的因素(Schmidt 和 Steinhart 等人,Science,2022)。我们建议转化这些高通量发现的见解。 使用异种移植小鼠进行体内屏幕点击的新型敲入设计的临床前测试工作 在本提案中,我们将测试来自功能获得性 CRISPR PoKI 的经过验证的候选模型(目标 1)和 CRISPRa(目标 2)筛选发现可改善基于细胞的 T 细胞的敲入结构的新成分 我们还认识到,如果这些遗传成分不表达,可能会更有益。 在目标 3 中,我们利用合成生物学的力量来设计能够实现的合成电路。 诱导或抑制基因程序以响应抗原刺激。 遗传元件的调控具有进一步提高下一代疗效和安全性的巨大潜力 综上所述,我们提出了一项利用最近发现的提案。 CRISPR 发现平台和合成生物学方面的深厚专业知识可设计强大的“敲入”电路 我们将利用功能基因组学、CRISPR 在临床前癌症模型中进行验证和研究。 工程和合成细胞程序设计专业知识可解决 T 细胞效力和 T 细胞不足的问题 功能障碍,这仍然是癌症过继细胞疗法的重大障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Marson其他文献

Alexander Marson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Marson', 18)}}的其他基金

Project 3
项目3
  • 批准号:
    10506989
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Core B: Human Genetics and Genomics Core
核心 B:人类遗传学和基因组学核心
  • 批准号:
    10576380
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Project 3: CRISPR Genome Editing to Understand and Correct STAT3 GOF Immune Dysregulation
项目 3:通过 CRISPR 基因组编辑了解和纠正 STAT3 GOF 免疫失调
  • 批准号:
    10576392
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Project 3: CRISPR Genome Editing to Understand and Correct STAT3 GOF Immune Dysregulation
项目 3:通过 CRISPR 基因组编辑了解和纠正 STAT3 GOF 免疫失调
  • 批准号:
    10328103
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Project 3
项目3
  • 批准号:
    10666677
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Core B: Human Genetics and Genomics Core
核心 B:人类遗传学和基因组学核心
  • 批准号:
    10328100
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Functional Molecular Investigation of Inflammatory Bowel Disease (IBD) Risk Variants
炎症性肠病 (IBD) 风险变异的功能分子研究
  • 批准号:
    10374675
  • 财政年份:
    2021
  • 资助金额:
    $ 77.15万
  • 项目类别:
Editing to Create and Correct Gene Variants
编辑以创建和纠正基因变异
  • 批准号:
    10462633
  • 财政年份:
    2020
  • 资助金额:
    $ 77.15万
  • 项目类别:
Inherited T cell defects: Diagnosis, Mechanisms and Treatments
遗传性 T 细胞缺陷:诊断、机制和治疗
  • 批准号:
    10728891
  • 财政年份:
    2020
  • 资助金额:
    $ 77.15万
  • 项目类别:
Editing to Create and Correct Gene Variants
编辑以创建和纠正基因变异
  • 批准号:
    10256630
  • 财政年份:
    2020
  • 资助金额:
    $ 77.15万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Time-lapse Flow Cytometry for Kinetic Profiling of T-Cell Function
用于 T 细胞功能动力学分析的延时流式细胞术
  • 批准号:
    10699148
  • 财政年份:
    2023
  • 资助金额:
    $ 77.15万
  • 项目类别:
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
  • 批准号:
    10708901
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Deciphering the role of p16INK4A+ fibroblasts in lung fibrosis
解读 p16INK4A 成纤维细胞在肺纤维化中的作用
  • 批准号:
    10559515
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Microbiota-derived metabolites and the regulation of host immunity and inflammation
微生物群衍生的代谢物以及宿主免疫和炎症的调节
  • 批准号:
    10645229
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
Improving the Efficacy of Allogeneic Cell Therapies of Cancer
提高癌症同种异体细胞疗法的疗效
  • 批准号:
    10686219
  • 财政年份:
    2022
  • 资助金额:
    $ 77.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了