Project 1: UW-CNOF Mapping Technology Development
项目1:UW-CNOF测绘技术开发
基本信息
- 批准号:9021412
- 负责人:
- 金额:$ 63.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressArchitectureBenchmarkingBiochemicalBiological AssayCell NucleusCellsChromatinChromosomesCommunitiesCoupledDataData QualityDeoxyribonucleasesDependenceDependencyDevelopmentEpigenetic ProcessEventGene Expression ProfileGenerationsGenomeGenome MappingsGoalsHeterogeneityHybridsIn SituIndividualInvestigationMapsMeasurementMeasuresMethodsModelingMolecular ConformationNuclearPersonsPoliciesPopulationProblem SolvingProcessProductionProtocols documentationRegulatory ElementReportingResearchResearch PersonnelResolutionRoleSamplingSchemeSensitivity and SpecificitySpecificityStructureTechnologyTimeTrainingUniversitiesWashingtonWorkabstractingbasecombinatorialcostcost effectiveepigenomegenome-wideimprovedin vivoindexinginterestresearch studyrestriction enzymespatiotemporaltechnology developmenttooltranscriptome sequencing
项目摘要
ABSTRACT – PROJECT 1: UW-CNOF MAPPING TECHNOLOGY DEVELOPMENT
Over the past decade, advances in technologies for assaying genome architecture have led to remarkable
progress in our understanding of the 4D nucleome, i.e. the spatiotemporal organization of the eukaryotic
genomes within nuclei. Among all of the powerful experimental tools that have recently emerged, chromosome
conformation capture (3C) and its high-throughput derivatives have become the most widely used methods for
characterizing genome architecture both locally and globally. However, the current repertoire of 3C-based
methods is crucially limited with respect to key parameters such as specificity, resolution and input
requirements. Recently, we have made substantial progress in addressing these limitations with DNase Hi-C, a
restriction enzyme-free derivative of the Hi-C protocol. Here, we propose to further develop biochemical
methods for characterizing the dynamic 4D nucleome that substantially improve upon the state of the art with
respect to input requirements (down to single cell), resolution (eliminating restriction enzyme bias), scale
(genome-wide or targeted views) and integration (combined measurements with the transcriptome and
epigenome), while also improving sensitivity, specificity, simplicity and throughput. In Aim 1, we will continue to
optimize genome-wide and targeted DNase Hi-C protocols – including a much simplified, in situ version of
DNase Hi-C – to further minimize input requirements and bias while improving resolution. We will also refine
these protocols in order to maximize robustness, scalability and exportability. In Aim 2, we will develop a high-
throughput method for routinely measuring genome architecture in large numbers of single cells. Our proposed
approach, based on combinatorial indexing and supported by substantial preliminary data, enables the routine
production of DNase Hi-C (nuclear architecture) or ATAC-seq (chromatin accessibility) data from hundreds to
thousands of single cells per experiment. In Aim 3, we will integrate DNase Hi-C and other assays for the
concurrent measurement of genome architecture, epigenetic state, and the transcriptome, in each of many
single cells. We believe that the successful development of such co-assays will profoundly advance our ability
to develop integrative models connecting genome form and function. Finally, in Aim 4, we will standardize,
benchmark, and export the experimental methods developed by this project, with the goal of maximizing their
impact and utility for NOFIC investigators, the 4DN Network, and the broader scientific community.
摘要 - 项目1:UW-CNOF映射技术开发
在过去的十年中,主张基因组建筑的技术进步导致了非凡的
我们对4D核心的理解的进展,即真核的时空组织
核内的基因组。在最近出现的所有强大实验工具中,染色体
构象捕获(3C)及其高通量衍生物已成为最广泛使用的方法
在本地和全球范围内表征基因组建筑。但是,目前基于3C的曲目
对于特异性,分辨率和输入等关键参数,方法完全受到限制
要求。最近,我们在解决这些局限性的限制方面取得了重大进展,
HI-C方案的无限制酶衍生物。在这里,我们建议进一步发展生化
表征动态4D核心的方法
尊重输入需求(直至单元),分辨率(消除限制酶偏见),尺度
(全基因组或有针对性的视图)和集成(与转录组结合测量和
表观基因组),同时还提高了灵敏度,特异性,简单性和吞吐量。在AIM 1中,我们将继续
优化全基因组和有针对性的DNase HI-C协议 - 包括一个备受简化的原位版本
DNase Hi-C - 进一步最大程度地减少输入要求和偏差,同时改善分辨率。我们还将完善
这些协议是为了最大程度地提高鲁棒性,可伸缩性和导出性。在AIM 2中,我们将发展一个高级
用于常规测量大量单细胞的基因组结构的吞吐量方法。我们提出的
基于组合索引并得到大量初步数据支持的方法,启用例程
从数百至
每个实验数千个单元格。在AIM 3中,我们将集成DNase Hi-C和其他测定法
同时测量基因组结构,表观遗传状态和转录组的同时测量
单细胞。我们认为,这种共同测定的成功发展将深刻提高我们的能力
开发连接基因组形式和功能的集成模型。最后,在AIM 4中,我们将标准化,
基准,并导出该项目开发的实验方法,目的是使其最大化
诺弗研究者,4DN网络和更广泛的科学界的影响力和实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Ashok Shendure其他文献
Jay Ashok Shendure的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Ashok Shendure', 18)}}的其他基金
Versatile, exponentially scalable methods for single cell molecular profiling
用于单细胞分子分析的多功能、指数扩展方法
- 批准号:
9796355 - 财政年份:2019
- 资助金额:
$ 63.73万 - 项目类别:
Versatile, exponentially scalable methods for single cell molecular profiling
用于单细胞分子分析的多功能、指数扩展方法
- 批准号:
10447677 - 财政年份:2019
- 资助金额:
$ 63.73万 - 项目类别:
Versatile, exponentially scalable methods for single cell molecular profiling
用于单细胞分子分析的多功能、指数扩展方法
- 批准号:
10018642 - 财政年份:2019
- 资助金额:
$ 63.73万 - 项目类别:
Versatile, exponentially scalable methods for single cell molecular profiling
用于单细胞分子分析的多功能、指数扩展方法
- 批准号:
10216319 - 财政年份:2019
- 资助金额:
$ 63.73万 - 项目类别:
Interpreting Genetic Variants of Uncertain Significance
解释意义不确定的遗传变异
- 批准号:
8895371 - 财政年份:2013
- 资助金额:
$ 63.73万 - 项目类别:
Interpreting Genetic Variants of Uncertain Significance
解释意义不确定的遗传变异
- 批准号:
8563280 - 财政年份:2013
- 资助金额:
$ 63.73万 - 项目类别:
Interpreting Genetic Variants of Uncertain Significance
解释意义不确定的遗传变异
- 批准号:
8739542 - 财政年份:2013
- 资助金额:
$ 63.73万 - 项目类别:
Ultrasensitive identification and precise quantitation of low frequency somatic m
低频体细胞的超灵敏识别和精确定量
- 批准号:
8334013 - 财政年份:2011
- 资助金额:
$ 63.73万 - 项目类别:
Ultrasensitive identification and precise quantitation of low frequency somatic m
低频体细胞的超灵敏识别和精确定量
- 批准号:
8517045 - 财政年份:2011
- 资助金额:
$ 63.73万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 63.73万 - 项目类别:
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:
10573782 - 财政年份:2023
- 资助金额:
$ 63.73万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 63.73万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 63.73万 - 项目类别: