Smart Anatomic Recognition System to Guide Emergency Intubation and Resuscitation

智能解剖识别系统指导紧急插管和复苏

基本信息

  • 批准号:
    8453607
  • 负责人:
  • 金额:
    $ 24.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-20 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Over 3 million emergency intubations are performed in the US every year and failure rates can be as high as 50% (3-5). Success is highly dependent on how frequently the responder performs this life-saving procedure on humans (6). Brio Device, LLC, an airway management medical device company, is addressing the need to decouple the success of the procedure from the experience of the user with their "smart" intubation device which integrates anatomic structure recognition algorithms and visual guidance feedback with an articulating stylet. Brio's intubation device is specifically designed fo the needs of emergency responders, such as paramedics, emergency department personnel, code teams in hospitals and military medics, who often arrive at the patient first. The smart intubation device will reduce failure rates by providing the user with visual instruction of the correct path to the trachea as he places the endotracheal tube. The guidance software uses machine learning and computer vision algorithms to recognize the anatomy and determine the path to insert the tube. Ultimately, the intubation device will include both a guidance display on an LCD screen and an optical stylet that has single-axis angulation control of the distal tip. For the purpose of this Phase I study, a laptop or desktop computer will be used for the image processing and the guidance display that accompanies the articulating stylet. The long-term goal is to create a device that is compact, light-weight and portable to suit the needs of ambulances and hospital crash carts. The hypothesis for this study is that by incorporating a video guidance display with an articulating stylet, inexperienced users will be more successful in correctly placing the endotracheal tube using this device compared to direct laryngoscopy. To achieve this goal, image processing and machine learning algorithms will be developed to recognize key anatomic structures in the airway. Software will also be developed determine the path the tube should follow and to display this information for the user. Finally, the efficacy of the device will be validated in airway simulation mannequins with medical students serving as the inexperienced users. Phase II will focus on integrating the guidance software, articulating optical stylet and display into a portable device with embedded hardware and software contained within the stylet handle. At completion of Phase II, the device will be ready for clinica trials and FDA testing. Brio will enter the $20 billion airway market with its intubation device. Initial sales will begin with anesthesiologists who are early adopters of new technology to assist with difficult airways. Brio will market its product to ~327,000 clinicians who use intubation devices. The U.S. addressable market for emergency intubation is ~$900M for the 41,000 ambulances and 5,800 emergency departments and hospital code teams.
描述(由申请人提供):美国每年进行超过 300 万次紧急插管,失败率高达 50% (3-5)。成功很大程度上取决于响应者对人类执行此挽救生命程序的频率 (6)。 Brio Device, LLC 是一家气道管理医疗设备公司,正在解决将手术成功与用户体验脱钩的需求,其“智能”插管设备将解剖结构识别算法和视觉引导反馈与铰接管心针集成在一起。 Brio 的插管设备专为满足紧急响应人员的需求而设计,例如护理人员、急诊科人员、医院代码团队和军事医务人员,他们通常最先到达患者身边。当用户放置气管插管时,智能插管设备会向用户提供气管正确路径的视觉指示,从而降低失败率。引导软件使用机器学习和计算机视觉算法来识别解剖结构并确定插入管的路径。最终,插管设备将包括液晶显示屏上的引导显示器和具有远端尖端单轴角度控制的光学管心针。出于第一阶段研究的目的,将使用笔记本电脑或台式计算机进行图像处理和伴随关节管心针的引导显示。长期目标是创造一种结构紧凑、重量轻且便于携带的设备,以满足救护车和医院急救车的需求。 这项研究的假设是,通过将视频引导显示器与铰接管心针相结合,与直接喉镜检查相比,没有经验的用户将使用该设备更成功地正确放置气管插管。为了实现这一目标,将开发图像处理和机器学习算法来识别气道中的关键解剖结构。还将开发软件来确定管子应遵循的路径并向用户显示此信息。最后,该设备的功效将在气道模拟人体模型中得到验证,并由医学生作为没有经验的用户。第二阶段将侧重于集成制导软件,将光学探针和显示器连接到便携式设备中,探针手柄中包含嵌入式硬件和软件。第二阶段完成后,该设备将准备好进行临床试验和 FDA 测试。 Brio 将凭借其插管设备进入价值 200 亿美元的气道市场。最初的销售将从麻醉师开始,他们是新技术的早期采用者,以帮助治疗困难气道。 Brio 将向约 327,000 名使用插管设备的临床医生推销其产品。美国紧急插管的潜在市场约为 9 亿美元,涉及 41,000 辆救护车和 5,800 个急诊科和医院代码团队。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura L McCormick其他文献

Laura L McCormick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura L McCormick', 18)}}的其他基金

Articulating Video Stylet for Improved Intubation Success Rates
铰接视频管芯以提高插管成功率
  • 批准号:
    10009450
  • 财政年份:
    2016
  • 资助金额:
    $ 24.47万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying Risk Factors for Poor Glycemic Control among Emergency Department Patients and Improving Linkage to Outpatient Care
确定急诊科患者血糖控制不佳的风险因素并改善与门诊护理的联系
  • 批准号:
    10734304
  • 财政年份:
    2023
  • 资助金额:
    $ 24.47万
  • 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 24.47万
  • 项目类别:
Plans4Care: Personalized Dementia Care On-Demand
Plans4Care:按需个性化痴呆症护理
  • 批准号:
    10758864
  • 财政年份:
    2023
  • 资助金额:
    $ 24.47万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 24.47万
  • 项目类别:
Addressing Algorithmic Unreliability and Dataset Shift in EHR-based Risk Prediction Models
解决基于 EHR 的风险预测模型中的算法不可靠性和数据集转移
  • 批准号:
    10679376
  • 财政年份:
    2023
  • 资助金额:
    $ 24.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了