Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
基本信息
- 批准号:8839001
- 负责人:
- 金额:$ 38.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAgingAlzheimer&aposs DiseaseAntineoplastic AgentsApoptosisAtherosclerosisBindingBiochemicalCardiovascular DiseasesCell SurvivalCellsCervix carcinomaClientColon CarcinomaColorectal CancerComplexDevelopmentDiseaseDown-RegulationDrug TargetingFunctional disorderGoalsHandHomeostasisHomologous GeneHumanHuntington DiseaseHybridsIn VitroLigand BindingLightMalignant Epithelial CellMalignant neoplasm of ovaryMalignant neoplasm of prostateMetabolic DiseasesMethodsMitochondriaMitochondrial MatrixMitochondrial ProteinsMolecularMolecular ChaperonesMonitorNeoplasmsNeurodegenerative DisordersNon-Insulin-Dependent Diabetes MellitusNuclearNucleotidesOrganellesParkinson DiseasePeptide HydrolasesPhysiological ProcessesPopulationProcessProliferatingProteinsPublic HealthQuality ControlResearchResolutionRoleSTAT3 geneSignal TransductionStagingStructureSubstrate InteractionSystemTestingTime Factorsage relatedbasecancer cellcancer typecell typechaperone machinerydrug developmentgambogic acidhuman diseasein vivoinhibitor/antagonistinnovationinterestmalignant breast neoplasmmembermitochondrial dysfunctionmortalinmortalitymutantneoplastic cellnovel therapeuticsosteosarcomaparalogous genepreventprostate cancer cellprotein aggregationprotein foldingprotein misfoldingpublic health relevancesmall moleculesurveillance strategythree dimensional structuretranscription factortumor
项目摘要
DESCRIPTION (provided by applicant): Mitochondrial degeneration and dysfunction are a hallmark of aging and aging-related human diseases, including Alzheimer disease, Parkinson disease, Huntington disease, cancer, type 2 diabetes, atherosclerosis, and cardiovascular diseases. Consequently, mitochondria have evolved several surveillance strategies to protect the organelle from damage. At the same time, factors that target mitochondrial proteins and selectively induce apoptosis, for instance of cancer cells, are actively sought after. The mitochondria provide a paradigm to elucidate the network of molecular chaperones and energy-dependent proteases, which function synergistically to maintain protein homeostasis in the mitochondrial matrix. It is widely appreciated that molecular chaperones provide the first line of defense against protein misfolding diseases by promoting folding and preventing aberrant folding and protein aggregation. In addition to their role in protein folding, mitochondrial chaperones, such as Mortalin (mtHsp70) and TRAP1 (mtHsp90) are also widely expressed in most tumor cell types, including colorectal, breast, prostate, and ovarian cancer, which have the highest mortality rates, but strikingly not in highly proliferating, non-tumor cells. Remarkably, down- regulation of TRAP1 abrogates the transforming potential of osteosarcoma, colon carcinoma, and cervix carcinoma cells, supporting a new role of mitochondrial chaperones in the immortalization of cancer cells. Consistently, inhibition of TRAP1 induces apoptosis in prostate cancer cells, underscoring the significance of mitochondrial chaperones as promising new drug targets. The broad and long-term research objective is to provide a molecular understanding of the mitochondrial protein quality control system in vitro and in vivo, to determine the underlying cooperative mechanism and function of the mitochondrial protein folding machinery in normal and pathological states, and how small molecules can be used to modulate mitochondrial chaperone function. The goals of this research will be pursued through the following specific aims: 1) to characterize the mitochondrial protein folding machinery in normal and disease states; 2) to target the structure of TRAP1 with small molecule compounds to modulate its chaperone function; and 3) to determine the structural and molecular basis of TRAP1-substrate interaction. To accomplish our research objective, we will use a multi-pronged in vitro and in vivo approach, which spans different resolution scales and adds to the innovation of the proposed research.
描述(由适用提供):线粒体变性和功能障碍是衰老和与衰老有关的人类疾病的标志,包括阿尔茨海默氏病,帕金森病,帕金森病,亨廷顿疾病,癌症,2型糖尿病,动脉粥样硬化,动脉粥样硬化和心血管疾病。因此,线粒体发展了几种保护细胞器免受损害的监视策略。同时,靶向线粒体蛋白和选择性诱导凋亡的因素,例如癌细胞,在此之后受到积极伤害。线粒体提供了一个范式,以阐明分子链酮和能量依赖性蛋白的网络,该蛋白具有协同作用,可维持线粒体基质中的蛋白质稳态。人们普遍认为,分子链酮通过促进折叠并防止异常折叠和蛋白质聚集提供针对蛋白质错误折叠疾病的第一道防线。除了它们在蛋白质折叠中的作用外,线粒体伴侣(例如mortalin(MTHSP70)和TRAP1(MTHSP90))在大多数肿瘤细胞类型中也得到广泛表达,包括结直肠癌,乳腺癌,前列腺癌和卵巢癌,这些癌症的死亡率最高,但在高度增殖的非肥大细胞中,它们具有最高的含量。值得注意的是,TRAP1的下调消除了骨肉瘤,结肠癌和子宫颈癌细胞的转化潜力,从而支持了线粒体链在癌细胞免疫化中的新作用。一致地,抑制TRAP1会诱导前列腺癌细胞的凋亡,突显了线粒体链烷的重要性,这是有希望的新药物靶标。广泛的长期研究目标是在体外和体内对线粒体蛋白质质量控制系统提供分子理解,以确定正常和病理状态中线粒体蛋白折叠机制的潜在合作机制和功能,以及如何使用小分子来调节线粒体链酮链酮的功能。这项研究的目标将通过以下特定目的来实现:1)表征正常和疾病状态下的线粒体蛋白折叠机械; 2)用小分子化合物靶向TRAP1的结构,以调节其伴侣功能; 3)确定Trap1-Substrate相互作用的结构和分子基础。为了实现我们的研究目标,我们将使用一种多管齐下的体外和体内方法,该方法涵盖了不同的分辨率量表,并增加了拟议研究的创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis T.F. Tsai其他文献
Three-Dimensional Structure of a Membrane-Anchored AAA Machine
- DOI:
10.1016/j.bpj.2010.12.2270 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Sukyeong Lee;Steffen Augustin;Takashi Tatsuta;Florian Gerdes;Thomas Langer;Francis T.F. Tsai - 通讯作者:
Francis T.F. Tsai
Francis T.F. Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis T.F. Tsai', 18)}}的其他基金
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10493261 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10663341 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10316887 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
- 批准号:
9220839 - 财政年份:2015
- 资助金额:
$ 38.07万 - 项目类别:
Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
- 批准号:
9024577 - 财政年份:2015
- 资助金额:
$ 38.07万 - 项目类别:
Structure and Mechanism of a Prion-remodeling Factor
朊病毒重塑因子的结构和机制
- 批准号:
8531529 - 财政年份:2013
- 资助金额:
$ 38.07万 - 项目类别:
Structure and Mechanism of a Prion-remodeling Factor
朊病毒重塑因子的结构和机制
- 批准号:
8670000 - 财政年份:2013
- 资助金额:
$ 38.07万 - 项目类别:
Structure/Mechanism of a Prion-remodeling Factor
朊病毒重塑因子的结构/机制
- 批准号:
7794934 - 财政年份:2008
- 资助金额:
$ 38.07万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The role of ATP13A5 ATPase in determining blood-brain pericyte functions
ATP13A5 ATP酶在确定血脑周细胞功能中的作用
- 批准号:
10814088 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
Enduring Consequences of Chronic Repeated Stress on Neuro-Metabolic Function
慢性反复压力对神经代谢功能的持久影响
- 批准号:
10464422 - 财政年份:2022
- 资助金额:
$ 38.07万 - 项目类别:
Perlecan Domain V as a therapeutic VCID strategy for the clearance of amyloid beta from the brain in cerebral amyloid angiopathy
Perlecan 结构域 V 作为治疗性 VCID 策略,用于清除大脑淀粉样血管病中的β淀粉样蛋白
- 批准号:
10372826 - 财政年份:2022
- 资助金额:
$ 38.07万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 38.07万 - 项目类别: