CRCNS: Neural Populations, High Frequency Oscillations and EEG seizures
CRCNS:神经群体、高频振荡和脑电图癫痫发作
基本信息
- 批准号:9047876
- 负责人:
- 金额:$ 34.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAreaBiological MarkersBrainCellsClinicalComputer SimulationCouplingDataData SetElectroencephalogramElectrophysiology (science)EpilepsyEventExcisionFailureFire - disastersFrequenciesGoalsHigh Frequency OscillationHodgkin DiseaseHumanIndividualInterneuronsInvadedInvestigationLeadLinear ModelsLiteratureMeasurementMethodsMicroelectrodesModelingModificationMonitorN-MethylaspartateNeuronsOperative Surgical ProceduresOutcomeOutputPartial EpilepsiesPatientsPhysiologyPopulationProbabilityPropertyPyramidal CellsRecruitment ActivityResectedRoleSeizuresShapesSignal TransductionSiteSliceSourceStructural defectStructureSynapsesSynaptic TransmissionSyndromeTechniquesTestingTissuesTranslatingValidationVisualWorkabstractingbrain tissuedriving forceexcitatory neuronextracellularimprovedin vivoinsightinterdisciplinary approachnervous system disordernetwork modelspostsynapticpublic health relevancereceptorrelating to nervous systemresponserestraintsimulationstem
项目摘要
Abstract
Epilepsy is a neurological disease affecting 65 million people worldwide. Patients with medically intractable seizures and with a clearly localized focus can often be successfully treated by surgical resection of the epileptic tissue. However, localization accuracy is limited, especially if overt structural abnormalities are absent. High frequency oscillations have been proposed as a key localizing biomarker. Unfortunately, progress in understanding the dynamics of seizure electrophysiology has been impeded by lack of measurement techniques for detailed monitoring of large networks both the temporal and spatial domains. We propose that multiscale network modeling incorporating known pathological mechanisms can provide useful insights into the circumstances under which high frequency oscillations are generated. We propose an interdisciplinary approach coupling modeling with an existing dataset of unique multiscale recordings, ranging from single-cell to large networks of millions of cells, during seizure activity in human cortical networks.
Our proposal is focused around several important clinical questions. First, we seek to define precisely how high frequency spectral components in broadband clinical recordings reflect the pathological activity specific to seizing brain areas. Second, we will identify the neuronal mechanisms permitting localized pathological activity to propagate, and how this propagation affects the properties· of broadband clinical recordings. In contrast to the prior literature in this area, our approach explicitly incorporates the network effects of cellular dynamics known to occur during experimental seizures, I.e. paroxysmal depolarization and depolarization block of specific cell populations. In Aim 1 we use scalable and detailed modeling of individual network nodes to relate single-cell activity to the mesoscopic network scale. The focus of this aim is to determine how network interactions generate high frequency oscillations. Independently, in Aim 2 we test the hypothesis that these small, mesoscopic networks are responsible, via propagation of the high frequency components, for the high-gamma oscillation in macroelectrode signals. We accomplish this by generating the macroelectrode signal with a simple linear model that employs single-cell and small network signals as its input. In Aim 3 we relate the observed seizure propagation, due to failure of the inhibitory veto, to network dynamics associated with the paroxysmal depolarization block. For all aims we will validate simulated results with data recorded during experimental seizures in slices of human cortex (single-cell and local network activity), and in vivo microelectrode recordings during human seizures (multi-unit as well as local network activities).
摘要
癫痫是一种神经系统疾病,影响着全球 6500 万人。患有医学上难治性癫痫发作且病灶明确的患者通常可以通过手术切除癫痫组织来成功治疗,但定位准确性有限,尤其是在不存在明显结构异常的情况下。不幸的是,由于缺乏对时间和空间大型网络进行详细监测的测量技术,高频振荡被认为是一种关键的定位生物标志物。我们提出,结合已知病理机制的多尺度网络建模可以为产生高频振荡的情况提供有用的见解,我们提出了一种与现有的独特多尺度记录数据集(从单细胞到大细胞)耦合建模的跨学科方法。在人类皮质网络的癫痫活动期间,由数百万个细胞组成的网络。
我们的建议集中于几个重要的临床问题,首先,我们寻求精确定义宽带临床记录中的高频成分如何反映特定于大脑区域的病理活动;其次,我们将确定允许局部病理活动传播的神经机制。 ,以及这种传播如何影响宽带临床记录的特性与该领域的先前文献相比,我们的方法明确地结合了实验性癫痫发作期间发生的细胞动力学的网络效应,即阵发性癫痫发作。在目标 1 中,我们使用单个网络节点的可扩展且详细的模型来将单细胞活动与介观网络尺度联系起来。独立地,在目标 2 中,我们测试了这样的假设:这些小型介观网络通过高频分量的传播,导致了宏电极信号中的高伽马振荡。通过使用单细胞和小网络信号作为输入的简单线性模型生成大电极信号,我们将由于抑制否决失败而观察到的癫痫传播与阵发性去极化相关的网络动力学联系起来。对于所有目标,我们将使用人类皮层切片实验癫痫发作期间记录的数据(单细胞和局部网络活动)以及人类癫痫发作期间的体内微电极记录来验证模拟结果。 (多单位以及本地网络活动)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine A Schevon其他文献
Catherine A Schevon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine A Schevon', 18)}}的其他基金
CRCNS: Neural Populations, High Frequency Oscillations and EEG seizures
CRCNS:神经群体、高频振荡和脑电图癫痫发作
- 批准号:
9150334 - 财政年份:2015
- 资助金额:
$ 34.49万 - 项目类别:
Integrated Multiscale Data Acquisition System for Human Intracranial Neurophysiol
人类颅内神经生理学集成多尺度数据采集系统
- 批准号:
8640680 - 财政年份:2014
- 资助金额:
$ 34.49万 - 项目类别:
Dynamics of long range network interactions in focal epilepsy
局灶性癫痫中远程网络相互作用的动态
- 批准号:
9792276 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Seizure localization in humans: the effect of inhibitory surround on the EEG
人类癫痫定位:抑制性周围环境对脑电图的影响
- 批准号:
8879228 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Seizure localization in humans: the effect of inhibitory surround on the EEG
人类癫痫定位:抑制性周围环境对脑电图的影响
- 批准号:
8714087 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Dynamics of long range network interactions in focal epilepsy
局灶性癫痫中远程网络相互作用的动态
- 批准号:
10198042 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Dynamics of long range network interactions in focal epilepsy
局灶性癫痫中远程网络相互作用的动态
- 批准号:
10456050 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Seizure localization in humans: the effect of inhibitory surround on the EEG
人类癫痫定位:抑制性周围环境对脑电图的影响
- 批准号:
8563126 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Seizure Location Using Signal Processing Techniques
使用信号处理技术进行癫痫发作定位
- 批准号:
7263942 - 财政年份:2005
- 资助金额:
$ 34.49万 - 项目类别:
Seizure Location Using Signal Processing Techniques
使用信号处理技术进行癫痫发作定位
- 批准号:
7099427 - 财政年份:2005
- 资助金额:
$ 34.49万 - 项目类别:
相似国自然基金
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球生产网络中领先企业策略合作伙伴区位重构及其对承接地区域发展的影响——战略耦合的视角
- 批准号:42371188
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
双循环下区域低碳创新多重网络的形成机制、影响效应与平衡策略研究
- 批准号:72374090
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
空间多尺度特征与时空相关的台风短临降水区域和强度预报影响研究
- 批准号:42306214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太平洋和大西洋年代际海温模态对大湄公河次区域夏季降水变化的协同影响研究
- 批准号:42375050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
CSRD Research Career Scientist Award Application
CSRD研究职业科学家奖申请
- 批准号:
10701136 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别: