FUS/TLS GAIN AND LOSS OF FUNCTION IN ALS: ANIMAL AND CELLULAR MODELS OF DISEASE
ALS 中 FUS/TLS 功能的获得和丧失:疾病的动物和细胞模型
基本信息
- 批准号:8856371
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesAlternative SplicingAmyotrophic Lateral SclerosisAnimal Disease ModelsAnimal ModelBehavioralBirthBrainCandidate Disease GeneCell modelCellsCessation of lifeClinicalCommunitiesDNA-Binding ProteinsData SetDevelopmentDiseaseDominant-Negative MutationFamilial Amyotrophic Lateral SclerosisFamilyFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionHigh-Throughput Nucleotide SequencingHigh-Throughput RNA SequencingHumanIn VitroKnock-in MouseKnock-outKnockout MiceLinkMediatingModelingMolecularMolecular AnalysisMorphologyMotorMotor ActivityMotor Neuron DiseaseMotor NeuronsMusMutant Strains MiceMutationNeonatalNervous system structureNeuraxisNeurodegenerative DisordersNeuronsParalysedPathogenesisPathologyPathway interactionsPatternPerinatalPhenotypePhysiologicalPropertyProteinsRNARNA ProcessingReportingResearchRoleSeriesSpinalSpinal CordSynapsesTestingcell typedifferential expressiondisease mechanisms studydrug discoveryembryonic stem cellgain of functiongenetic analysishigh throughput analysisin vivoin vivo Modelloss of functionmRNA Expressionmotor neuron degenerationmotor neuron developmentmouse modelmutantneuron lossneurotoxicitynoveloverexpressionprotein TDP-43stem cell technologytherapeutic targettooltranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder in which preferential loss of motor neurons (MNs) results in paralysis and death. Although ALS is largely a sporadic disease, research has focused on heritable forms of the disorder because clinical and pathological evidence suggests common pathogenic mechanisms. Mutations in the gene FUS (or TLS) were recently reported in rare ALS families, and FUS pathology has since been found in sporadic ALS, suggesting that FUS may provide a mechanistic link between familial and sporadic disease. Structural and functional similarities between FUS and TDP-43 - another RNA/DNA-binding protein involved in the pathogenesis of sporadic and familial ALS - have also led to speculation that the molecular pathways regulated by both of these factors are vital to our understanding of common disease mechanisms. We know very little about how mutations in FUS cause motor neuron degeneration. Dominant inheritance of FUS mutations suggests a novel gain of function that is selectively toxic to motor neurons. Alternatively, mutant FUS may act as a dominant negative, inhibiting the normal activity of wild type protein, perhaps by sequestering it in abnormal FUS-positive, cytoplasmic aggregates that are a hallmark of sporadic and familial ALS. If ALS results as a consequence of FUS deficiency, then it is critical to understand more about the normal functions of FUS in the central nervous system, and specifically in the motor circuits affected in the disease. In this project, loss and gain of function strategies are used to explore the role of FUS in normal motor neuron development in animal and cellular models, and to relate that function to mutant FUS-mediated ALS. In vitro studies will take advantage of our ability to generate FUS mutant embryonic stem cell-derived motor neurons in large numbers. In Aim 1, FUS knockout mice will be used to support the hypothesis that motor neuron degeneration in ALS is a consequence of FUS deficiency. We will test the effect of FUS loss on motor neuron differentiation and survival and on the functional development of spinal motor circuits required for normal motor activity. By high-throughput RNA sequencing (RNA Seq), we will explore the normal role of FUS in the regulation of gene expression in the nervous system. In Aim 2, we will use overexpression studies of mutant FUS to characterize the effect on motor neuron survival and function in vivo, and to determine how mutations alter the functional properties of FUS in ALS. RNA Seq analysis will be used to identify molecular pathways involved in the pathogenesis of disease. In Aim 3, we will use motor neurons derived from mouse embryonic stem cells to study cellular and molecular mechanism of FUS-mediated motor neuron degeneration. This project will address fundamental questions about the role of FUS in ALS, and generate novel models of FUS-mediated disease in mice and cultured motor neurons that will be critical tools for future studies of disease mechanism and drug discovery in the ALS research community.
描述(由申请人提供):肌萎缩性侧性硬化症(ALS)是一种进行性神经退行性疾病,其中运动神经元(MNS)的优先丧失导致瘫痪和死亡。尽管ALS在很大程度上是一种零星疾病,但研究集中在可遗传的疾病形式上,因为临床和病理证据表明了常见的致病机制。最近在罕见的ALS家族中报道了基因FUS(或TLS)中的突变,此后在零星的ALS中发现了FUS病理学,这表明FUS可能会提供家族性和零星疾病之间的机械联系。 FUS和TDP -43之间的结构和功能相似性 - 参与零星和家族性ALS发病机理的另一种RNA/DNA结合蛋白 - 也导致人们猜测,这些因素受调节的分子途径对于我们对常见疾病机制的理解至关重要。我们对FUS中的突变如何引起运动神经元变性。 FUS突变的主要遗传表明,具有选择性毒性的运动神经元有毒的新功能增益。另外,突变型FU可以作为主要阴性,抑制野生型蛋白的正常活性,也许是通过在异常的FUS阳性,细胞质聚集体中隔离,这是零星和家族性ALS的标志。如果由于FUS缺乏而导致ALS,那么更多地了解中枢神经系统中FUS的正常功能,特别是在疾病影响的运动电路中,至关重要。在该项目中,功能策略的丧失和增益用于探索FUS在动物和细胞模型中正常运动神经元发展中的作用,并将该功能与突变体FUS介导的ALS相关联。体外研究将利用我们大量产生FUS突变体干细胞衍生运动神经元的能力。在AIM 1中,FUS敲除小鼠将用于支持以下假设:ALS中的运动神经元变性是FUS缺乏的结果。我们将测试FUS丧失对运动神经元分化和存活的影响以及正常运动活动所需的脊柱运动电路的功能发展。通过高通量RNA测序(RNA SEQ),我们将探讨FUS在神经系统中基因表达调节中的正常作用。在AIM 2中,我们将使用突变FUS的过表达研究来表征对运动神经元存活和体内功能的影响,并确定突变如何改变ALS中FUS的功能特性。 RNA SEQ分析将用于鉴定疾病发病机理涉及的分子途径。在AIM 3中,我们将使用源自小鼠胚胎干细胞的运动神经元来研究FUS介导的运动神经元变性的细胞和分子机制。该项目将解决有关FUS在ALS中的作用的基本问题,并在小鼠和培养的运动神经元中产生新颖的FUS介导疾病模型,这将是对ALS研究社区中疾病机制和药物发现的未来研究的关键工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Alan Shneider其他文献
Neil Alan Shneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Alan Shneider', 18)}}的其他基金
Corticospinal neuron dysfunction and degeneration in ALS: testing the role of corticomotor connectivity in motor neuron disease
ALS 中的皮质脊髓神经元功能障碍和变性:测试皮质运动连接在运动神经元疾病中的作用
- 批准号:
10307566 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Corticospinal neuron dysfunction and degeneration in ALS: testing the role of corticomotor connectivity in motor neuron disease
ALS 中的皮质脊髓神经元功能障碍和变性:测试皮质运动连接在运动神经元疾病中的作用
- 批准号:
10523057 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Mechanisms of FUS Toxicity in Animal and Cellular Models of ALS/FTD.
FUS 在 ALS/FTD 动物和细胞模型中的毒性机制。
- 批准号:
10337336 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
FUS/TLS GAIN AND LOSS OF FUNCTION IN ALS: ANIMAL AND CELLULAR MODELS OF DISEASE
ALS 中 FUS/TLS 功能的获得和丧失:疾病的动物和细胞模型
- 批准号:
8316288 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
FUS/TLS GAIN AND LOSS OF FUNCTION IN ALS: ANIMAL AND CELLULAR MODELS OF DISEASE
ALS 中 FUS/TLS 功能的获得和丧失:疾病的动物和细胞模型
- 批准号:
8656160 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
FUS/TLS GAIN AND LOSS OF FUNCTION IN ALS: ANIMAL AND CELLULAR MODELS OF DISEASE
ALS 中 FUS/TLS 功能的获得和丧失:疾病的动物和细胞模型
- 批准号:
8461472 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
FUS/TLS GAIN AND LOSS OF FUNCTION IN ALS: ANIMAL AND CELLULAR MODELS OF DISEASE
ALS 中 FUS/TLS 功能的获得和丧失:疾病的动物和细胞模型
- 批准号:
8238585 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
FUS Gain-of-Function Mechanisms in Animal and Cellular Models of ALS
ALS 动物和细胞模型中的 FUS 功能获得机制
- 批准号:
9513163 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Molecular profiling of gamma motor neuron development
伽马运动神经元发育的分子谱
- 批准号:
8029367 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Molecular profiling of gamma motor neuron development
伽马运动神经元发育的分子谱
- 批准号:
8130880 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别: