Hip Chondromics: Comprehensive Cartilage Characterization with MR Fingerprinting

髋关节软骨组学:利用 MR 指纹图谱进行综合软骨表征

基本信息

项目摘要

Project Summary/Abstract Hip Chondromics: comprehensive cartilage characterization with MR fingerprinting Femoroacetabular impingement (FAI) is a pathologic condition in which structural abnormalities of the femoral head-neck junction and/or acetabulum lead to a mechanical blockage in the hip joint that compromises the terminal range of motion. If the impingement is left untreated, it can cause cartilage damage and lead to hip osteoarthritis. The goal of this project is to demonstrate the utility of multi-parametric quantitative magnetic resonance (MR) imaging for the clinical management of FAI and to develop the technology necessary to translate it into clinical routine. We will conduct a longitudinal study using intraoperative cartilage assessment and clinical outcome measures to show, for the first time, that a combination of dGEMRIC (i.e., cartilage T1 mapping in the presence of gadolinium contrast agent) and T2 mapping can identify prognostic factors associated with successful FAI arthroscopy and improve surgical patient selection. Concurrently, we will develop a method to map multiple MR parameters simultaneously in one single scan and enable comprehensive morphologic and biochemical characterization of the hip cartilage without exogenous contrast agents (i.e., “Hip Chondromics”). This new technique will employ concepts from magnetic resonance fingerprinting (MRF) to create B1 insensitive 3D multi-parametric maps with isotropic resolution in clinically feasible scan time. In particular, we will develop a new strategy to simultaneously quantify T1, T2 and magnetization transfer (MT) rate using MR fingerprints, since the combination of these three parameters has demonstrated a strong correlation (r2 > 0.8) with direct measurements of cartilage biochemical components. To facilitate clinical translation of quantitative MR parameters in FAI, we will also develop and disseminate new software tools for automated segmentation of the hip cartilage, extraction of relevant diagnostic measures and optimized data visualization. Our technique will enable accurate preoperative assessment of articular cartilage damage, predict risk for progression, identify patients who will benefit from arthroscopy, and monitor the effectiveness of joint preserving surgeries, as well as cartilage repair procedures, in preventing hip osteoarthritis. Successful completion of this project will provide a new classification system for articular cartilage lesions in the hip, based on quantitative MR imaging, which is intrinsically more sensitive to early cartilage damage than standard X-ray and magnetic resonance imaging. Our proposed MRF technique will enable in vivo rapid volumetric multi-parametric mapping that could also have an impact for quantitative imaging in other anatomical structures such as, for example, the brain.
项目概要/摘要 髋关节软骨组学:通过 MR 指纹识别全面软骨表征 股骨髋臼撞击症(FAI)是一种病理状况,其中股骨结构异常 头颈连接处和/或髋臼导致髋关节机械阻塞,从而损害髋关节 如果不及时治疗撞击,可能会导致软骨损伤并导致髋关节损伤。 该项目的目标是证明多参数定量磁力的实用性。 磁共振 (MR) 成像用于 FAI 的临床管理并开发必要的技术 我们将利用术中软骨评估进行纵向研究。 和临床结果测量首次表明 dGEMRIC(即软骨 T1 存在钆造影剂的情况下进行测绘)和 T2 测绘可以识别预后因素 同时,我们将与 FAI 关节镜手术的成功相关并改善手术患者的选择。 开发一种在一次扫描中同时映射多个 MR 参数的方法,并启用 无需外源对比即可对髋关节软骨进行全面的形态学和生化表征 这项新技术将采用磁共振的概念。 指纹识别 (MRF),用于在临床中创建具有各向同性分辨率的 B1 不敏感 3D 多参数图 特别是,我们将开发一种新策略来同时量化 T1、T2 和 使用 MR 指纹的磁化转移 (MT) 速率,因为这三个参数的组合 证明与软骨生化成分的直接测量有很强的相关性(r2 > 0.8)。 促进 FAI 中定量 MR 参数的临床转化,我们还将开发和传播新的 用于自动分割髋关节软骨、提取相关诊断措施和 优化的数据可视化。我们的技术将能够对关节软骨进行准确的术前评估。 损伤,预测进展风险,识别将从关节镜检查中受益的患者,并监测 保留关节的手术以及软骨修复手术在预防髋关节损伤方面的有效性 该项目的成功完成将为关节病提供一个新的分类系统。 基于定量 MR 成像的髋部软骨病变,本质上对早期诊断更敏感 我们提出的 MRF 技术将比标准 X 射线和磁共振成像减少软骨损伤。 实现体内快速体积多参数映射,这也可能对定量产生影响 其他解剖结构(例如大脑)的成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Riccardo Lattanzi其他文献

Riccardo Lattanzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Riccardo Lattanzi', 18)}}的其他基金

Quantitative Analysis of Carpal Kinematics Using 3D Dynamic MRI
使用 3D 动态 MRI 定量分析腕骨运动学
  • 批准号:
    10554164
  • 财政年份:
    2022
  • 资助金额:
    $ 59.09万
  • 项目类别:
Quantitative Analysis of Carpal Kinematics Using 3D Dynamic MRI
使用 3D 动态 MRI 定量分析腕骨运动学
  • 批准号:
    10354380
  • 财政年份:
    2022
  • 资助金额:
    $ 59.09万
  • 项目类别:
Novel Software Tools for Rational Design and Assessment of MR Coils
用于磁流变线圈合理设计和评估的新型软件工具
  • 批准号:
    9925779
  • 财政年份:
    2017
  • 资助金额:
    $ 59.09万
  • 项目类别:
Novel Software Tools for Rational Design and Assessment of MR Coils
用于磁流变线圈合理设计和评估的新型软件工具
  • 批准号:
    9364167
  • 财政年份:
    2017
  • 资助金额:
    $ 59.09万
  • 项目类别:
Cloud MR: an Open-Source Software Framework to Democratize MRI Training and Research
Cloud MR:使 MRI 培训和研究大众化的开源软件框架
  • 批准号:
    10587391
  • 财政年份:
    2017
  • 资助金额:
    $ 59.09万
  • 项目类别:
Hip Chondromics: Comprehensive Cartilage Characterization with MR Fingerprinting
髋关节软骨组学:利用 MR 指纹图谱进行综合软骨表征
  • 批准号:
    10201516
  • 财政年份:
    2016
  • 资助金额:
    $ 59.09万
  • 项目类别:
Hip Chondromics: Comprehensive Cartilage Characterization with MR Fingerprinting
髋关节软骨组学:利用 MR 指纹图谱进行综合软骨表征
  • 批准号:
    9975102
  • 财政年份:
    2016
  • 资助金额:
    $ 59.09万
  • 项目类别:
Training & Dissemination
训练
  • 批准号:
    10453648
  • 财政年份:
    2014
  • 资助金额:
    $ 59.09万
  • 项目类别:
Training & Dissemination
训练
  • 批准号:
    10701724
  • 财政年份:
    2014
  • 资助金额:
    $ 59.09万
  • 项目类别:
Training & Dissemination
训练
  • 批准号:
    9804444
  • 财政年份:
    2014
  • 资助金额:
    $ 59.09万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
  • 批准号:
    10727361
  • 财政年份:
    2023
  • 资助金额:
    $ 59.09万
  • 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
  • 批准号:
    10715763
  • 财政年份:
    2023
  • 资助金额:
    $ 59.09万
  • 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
  • 批准号:
    10736523
  • 财政年份:
    2023
  • 资助金额:
    $ 59.09万
  • 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
  • 批准号:
    10648177
  • 财政年份:
    2023
  • 资助金额:
    $ 59.09万
  • 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
  • 批准号:
    10760947
  • 财政年份:
    2023
  • 资助金额:
    $ 59.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了