Mathematical modeling from metagenomics - minimizing risk of enteric infections
宏基因组学的数学模型 - 最大限度地降低肠道感染的风险
基本信息
- 批准号:8879331
- 负责人:
- 金额:$ 46.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-05 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAntibiotic TherapyAntibioticsBacteremiaBacteriaBiological AssayBone Marrow TransplantationCalculiClinicCollaborationsCommunitiesComputer AnalysisComputing MethodologiesCouplingDNA SequenceDNA Sequence AnalysisDataData SetDevelopmentDiagnosticDiseaseEcologyEnteralEnterobacteriaceaeEnterococcusGoalsHealthcareIn VitroIncidenceInfectionIntestinesInvadedKnowledgeMalignant NeoplasmsMediatingMetabolicMetabolic PathwayMetagenomicsMethodsMicrobeMissionModelingMonitorMusNational Institute of Allergy and Infectious DiseasePathway interactionsPatientsPopulationProbioticsPropertyProphylactic treatmentPublishingRefractoryResearchResistanceRibosomal RNARiskRoleStatistical ModelsTaxonTimeTransplantationUniversitiesValidationWorkbaseclinically relevantcombinatorialcomputer frameworkcomputerized toolscostdesignefficacy testingenteric pathogengut microbiotahazardinsightkillingsmathematical methodsmathematical modelmicrobialmicrobiomenovelpathogenpredictive modelingprophylacticprototypepublic health relevancereconstructionresearch studyrisk minimizationtargeted treatmenttheoriestool
项目摘要
DESCRIPTION: Enteric infections represent a critical issue in today's healthcare. Recent analysis of DNA sequencing data has demonstrated that such infections are associated with the prophylactic treatment with broad-spectrum antibiotics. This is due to their role in killing the native intestinal microbiota, which normally antagonizes pathogens. Computational analysis of these data should facilitate the optimization of antibiotic and fecal transplantation strategies. This is not yet possible because the currently used methods are based on correlations. The main goal of this project is to combine recently developed and novel mathematical modeling tools with metabolic pathways inference and experimentation to predict the risk of enteric diseases and to prototype rationally designed fecal transplantation therapies to minimize it. Leveraging on preliminary work, the PI and collaborators propose to: predict all the stable microbiota profiles mediating colonization by clinically-relevant enteric pathogens using 16S rRNA-constrained mathematical models; combine hazard regression modeling with microbiota dynamics predictions to evaluate the risk of enteric infections in hospitalized patients; determine
microbial metabolic pathways associated with the interactions between native intestinal bacteria and enteric pathogens; prototype modeling-based fecal transplantation strategies by experimental validation of modeling predictions. The design of rational therapies minimizing the incidence of enteric diseases depends on our understanding of the dynamics regulating the intestinal microbiota. For this reason, the proposed research is timely and relevant to the mission of the NIAID. The application of new predictive models to DNA sequencing data from a large population of hospitalized patients will allow identifying microbiota states with probiotic (and dysbiotic) properties to be targeted by therapies. The forecasting of microbial dynamics, combined with novel statistical models based on risk analysis, will deliver the first computational
tool for monitoring the risk of enteric diseases in quasi-real time. The application of metabolic reconstruction methods to the mathematical modeling predictions will provide new insights about potential metabolic mechanisms regulating and responsible for the predicted stability of pathogen-refractory and compatible stable steady states. The experimental validation of the modeling predictions, not only will allow evaluating the predictive power of the developed mathematical frameworks, but also will provide the opportunity to test the efficacy of the proposed rationally designed fecal transplantation strategies.
描述:肠道感染是当今医疗保健中的关键问题。对DNA测序数据的最新分析表明,这种感染与广谱抗生素的预防治疗有关。这是由于它们在杀死通常拮抗病原体的天然肠道微生物群中的作用。这些数据的计算分析应准备抗生素和粪便移植策略的优化。这是不可能的,因为当前使用的方法基于相关性。该项目的主要目的是将最近开发的新型数学建模工具与代谢途径推理和实验相结合,以预测肠道疾病的风险和原型设计,理性设计的粪便移植疗法将其最小化。利用初步工作,PI和合作者建议:预测使用16S rRNA受限的数学模型,预测临床上与临床相关的肠道病原体介导定殖的所有稳定的微生物群;将危险回归模型与微生物群动力学预测相结合,以评估住院患者肠道感染的风险;决定
与天然肠道细菌与肠道病原体之间相互作用相关的微生物代谢途径;通过实验验证建模预测,基于原型建模的粪便移植策略。最小化肠道疾病事件的有理疗法的设计取决于我们对肠道微生物群调节的动力学的理解。因此,拟议的研究与NIAID的使命及时且相关。新的预测模型应用于来自大量住院患者的DNA测序数据,将允许鉴定具有益生菌(和失调)特性的微生物群,以治疗为目标。对微生物动力学的预测,结合基于风险分析的新型统计模型,将提供第一个计算
代谢重建方法在数学建模预测中的应用将提供有关调节潜在代谢机制的新见解,并负责病原体难治性和兼容稳定稳态的预测稳定性。建模预测的实验验证不仅将允许评估开发的数学框架的预测能力,而且还将提供机会测试所提出的合理设计的粪便移植策略的功效。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanni Bucci其他文献
Vanni Bucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanni Bucci', 18)}}的其他基金
Aging Microbiome, Immunosenescence, and risk of Multi-drug Resistant Organism Colonization and Infection in the Nursing Home
疗养院微生物群老化、免疫衰老以及多重耐药微生物定植和感染的风险
- 批准号:
10584709 - 财政年份:2023
- 资助金额:
$ 46.47万 - 项目类别:
Development of targeted microbiome therapeutics and dietary interventions for potent intestinal barrier promotion to minimize GI-ARS
开发有针对性的微生物疗法和饮食干预措施,以有效促进肠道屏障,最大限度地减少 GI-ARS
- 批准号:
10569957 - 财政年份:2022
- 资助金额:
$ 46.47万 - 项目类别:
相似海外基金
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
- 批准号:
10586250 - 财政年份:2023
- 资助金额:
$ 46.47万 - 项目类别:
Using Implementation Science and Informatics to Develop and Pilot Test Antibiotic Stewardship Clinical Decision Support
利用实施科学和信息学来开发和试点测试抗生素管理临床决策支持
- 批准号:
10350624 - 财政年份:2021
- 资助金额:
$ 46.47万 - 项目类别:
Using Implementation Science and Informatics to Develop and Pilot Test Antibiotic Stewardship Clinical Decision Support
利用实施科学和信息学来开发和试点测试抗生素管理临床决策支持
- 批准号:
10560475 - 财政年份:2021
- 资助金额:
$ 46.47万 - 项目类别:
DAT- Integrated Outpatient Treatment of Opioid Use Disorder and Injection-Related Infections
DAT-阿片类药物使用障碍和注射相关感染的综合门诊治疗
- 批准号:
10673063 - 财政年份:2020
- 资助金额:
$ 46.47万 - 项目类别:
DAT- Integrated Outpatient Treatment of Opioid Use Disorder and Injection-Related Infections
DAT-阿片类药物使用障碍和注射相关感染的综合门诊治疗
- 批准号:
10268972 - 财政年份:2020
- 资助金额:
$ 46.47万 - 项目类别: