Clinical prioritization of reported disease variants in asymptomatic individuals

无症状个体中报告的疾病变异的临床优先顺序

基本信息

  • 批准号:
    8487872
  • 负责人:
  • 金额:
    $ 10.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Whole genome sequencing (WGS) has the potential to improve medical care, but much effort remains to translate sequence data into meaningful clinical interpretations. WGS interpretation must address both newly observed genetic variants that are likely to be harmful, as well as the review of over 150,000 variants that are already reported to be associated with disease from the medical and scientific literature. Many of these discoveries were made in small cohort and case studies, making it difficult to translate these into disease risks for asymptomatic individuals that carry these variants. Without accurate risk estimates for these associations, we may potentially expose healthy patients to false positive findings, leading to needless diagnostic workups and screenings that will substantially increase medical costs and patient morbidity. Central to WGS interpretation is the development of a standardized methodology to filter likely benign results, and to prioritize those variants that may be clinically significant and scientifically valid. While many of these previously identified variats are associated with Mendelian disorders that are individually rare, (e.g. hypertrophic cardiomyopathy and neurofibromatosis,) these disorders are collectively common, forming a long tail that confers disease risk for many individuals. Because each of these diseases is so rare, it is hard to envision a specialized interpretive approach to calculate risk for each disease so we propose a systematic approach that is broadly applicable across many rare diseases to assess variant disease risk. To meet this urgent need, we will develop a novel approach that estimates the penetrance of disease- associated variants using the prior probability of each disease, and the population frequencies of all of the known genetic variants for that disease for affected and unaffected individuals. This prior probability of disease is measured as the prevalence, or the proportion of individuals in a population affected with a disorder. Because the prevalence of a Mendelian disease is actually a combination of the penetrance and frequency of all of its genetic variation (as well as other behavioral and environmental factors) we propose to estimate these penetrance values using the disease prevalence and distribution of associated variation, for each disease. If there is only one variant associated with a disease, the total penetrance and population frequency for that disease should be closely correlated with disease prevalence, but if there are many disease-associated variants, each contributes less to the overall burden of diseases, adjusted by its frequency in the population. We will then use these penetrance estimates to establish genome-wide filtering cutoffs for likely benign variation and to prioritize observed WGS variation for review by clinical geneticists. We then propose to use these values to filter and rank the observed variation in individual WGS datasets in an existing clinical trial, and to compare these with existing clinical genetics interpretations.
描述(由申请人提供):全基因组测序(WGS)具有改善医疗保健的潜力,但将序列数据转化为有意义的临床解释仍需付出大量努力。 WGS 解释必须解决新观察到的可能有害的遗传变异,以及对医学和科学文献中已报道与疾病相关的超过 150,000 个变异的审查。其中许多发现是在小规模队列研究和案例研究中取得的,因此很难将其转化为 携带这些变异的无症状个体的疾病风险。如果没有对这些关联进行准确的风险评估,我们可能会将健康患者暴露在假阳性结果中,从而导致不必要的诊断检查和筛查,从而大幅增加医疗成本和患者发病率。 WGS 解释的核心是开发标准化方法来过滤可能的良性结果,并优先考虑那些可能的变异 具有临床意义和科学有效性。虽然许多先前发现的变异与孟德尔疾病有关,这些疾病个体罕见(例如肥厚性心肌病和神经纤维瘤病),但这些疾病总体上很常见,形成一条长尾,给许多人带来疾病风险。由于每种疾病都非常罕见,因此很难设想一种专门的解释方法来计算每种疾病的风险,因此我们提出了一种广泛适用于许多罕见疾病的系统方法来评估变异疾病风险。 为了满足这一迫切需求,我们将开发一种新方法,使用每种疾病的先验概率以及受影响和未受影响个体的该疾病的所有已知遗传变异的群体频率来估计疾病相关变异的外显率。疾病的先验概率以患病率或人口中患有某种疾病的个体比例来衡量。由于孟德尔疾病的患病率实际上是其所有遗传变异(以及其他行为和环境因素)的外显率和频率的组合,因此我们建议使用疾病患病率和相关变异的分布来估计这些外显率值,例如每种疾病。如果只有一种变异与一种疾病相关,则该疾病的总外显率和人群频率应与疾病患病率密切相关,但如果有许多与疾病相关的变异,则每种变异对疾病总体负担的贡献较小,调整为其在人群中的出现频率。然后,我们将使用这些外显率估计来建立可能的良性变异的全基因组过滤截止值,并优先考虑观察到的 WGS 变异以供临床遗传学家审查。然后,我们建议使用这些值来过滤和排序现有临床试验中各个 WGS 数据集中观察到的变异,并将这些值与现有的临床遗传学解释进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Cassa其他文献

Christopher Cassa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Cassa', 18)}}的其他基金

Integrative computational-experimental approaches to stratify monogenic disease risk
综合计算实验方法对单基因疾病风险进行分层
  • 批准号:
    10889297
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
Urgent Supplement: Correcting genetic disorders using predictable CRISPR/Cas9-induced exon skipping
紧急补充:利用可预测的 CRISPR/Cas9 诱导的外显子跳跃来纠正遗传疾病
  • 批准号:
    10163567
  • 财政年份:
    2020
  • 资助金额:
    $ 10.91万
  • 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
  • 批准号:
    9976565
  • 财政年份:
    2018
  • 资助金额:
    $ 10.91万
  • 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
  • 批准号:
    9789922
  • 财政年份:
    2018
  • 资助金额:
    $ 10.91万
  • 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
  • 批准号:
    10443630
  • 财政年份:
    2018
  • 资助金额:
    $ 10.91万
  • 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
  • 批准号:
    10213798
  • 财政年份:
    2018
  • 资助金额:
    $ 10.91万
  • 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
  • 批准号:
    9309017
  • 财政年份:
    2013
  • 资助金额:
    $ 10.91万
  • 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
  • 批准号:
    8692560
  • 财政年份:
    2013
  • 资助金额:
    $ 10.91万
  • 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
  • 批准号:
    9113670
  • 财政年份:
    2013
  • 资助金额:
    $ 10.91万
  • 项目类别:

相似国自然基金

算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
  • 批准号:
    10667700
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
  • 批准号:
    10761578
  • 财政年份:
    2023
  • 资助金额:
    $ 10.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了