Opsineering: Engineering Novel ChannelRhodospins for Optogenetics Applications

Opsineering:为光遗传学应用设计新型通道Rhodospins

基本信息

项目摘要

DESCRIPTION (provided by applicant): Optogenetics is genetically encoded, optically induced, control of cells through transgenic expression of microbial opsins in mammalian neurons. When these opsins are expressed in a cell-type specific manner and light activated, they provide temporally and spatially separated stimulation of independent hyperpolarizing and depolarizing channels in neurons in living animals. Channelrhodopsins (ChRs) are the microbial opsins used in optogenetics to trigger light induced depolarization. ChRs are light-gated ion channels that operate on the order of milliseconds, a time scale relevant for neuronal activation, and can be expressed in the membrane of distinct cell types with high temporal precision in well-defined brain regions. This contrasts with the poor temporal dynamics or lack of specificity of chemical or electrical stimulation methods. However, the optogenetics tools currently available for neuronal circuit interrogation are limited based on expression, light-wavelength activation, kinetics and ion specificity. Our proposed project addresses these limitations through protein engineering. Protein engineering through directed evolution and structure-guided recombination are well-established methods for modifying and optimizing proteins for desired functions. Current literature and preliminary collaborative work between the Gradinaru and Arnold labs at Caltech indicate that channelrhodopsins are amenable to functionally useful laboratory evolution and manipulation. This work will be focused toward engineering improved channelrhodopsins for use as biological tools in optogenetics. The aim is to engineer channelrhodopsins for optimal ion selectivity, kinetics, reversibility, and shifted light excitatio wavelengths. These new channel proteins will have applications in probing the brain's circuitry to better understand and model healthy and non-healthy brain function as a foundation for controlling and diagnosing neurological disorders such as addiction, depression and Parkinson's disease.
描述(由申请人提供):光遗传学是通过在哺乳动物神经元中微生物视蛋白的转基因表达来对细胞进行遗传编码、光诱导和控制。当这些视蛋白以细胞类型特异性方式表达并被光激活时,它们对活体动物神经元中独立的超极化和去极化通道提供时间和空间上分离的刺激。视紫红质通道蛋白 (ChRs) 是光遗传学中用于触发光诱导去极化的微生物视蛋白。 ChR 是光门控离子通道,其运行时间为毫秒级(与神经元激活相关的时间尺度),并且可以在明确的大脑区域中以高时间精度在不同细胞类型的膜中表达。这与化学或电刺激方法的时间动态性差或缺乏特异性形成鲜明对比。然而,目前可用于神经元回路询问的光遗传学工具由于表达、光波长激活、动力学和离子特异性而受到限制。我们提出的项目通过蛋白质工程解决了这些限制。 通过定向进化和结构引导重组的蛋白质工程是修饰和优化蛋白质以获得所需功能的成熟方法。目前的文献以及加州理工学院 Gradinaru 和 Arnold 实验室之间的初步合作工作表明,通道视紫红质适合功能上有用的实验室进化和操作。这项工作将集中于工程改良视紫红质通道,用作光遗传学中的生物工具。目的是设计视紫红质通道以获得最佳的离子选择性、动力学、可逆性和移动的光激发波长。这些新的通道蛋白将应用于探测大脑的电路,以更好地理解和模拟健康和不健康的大脑功能,作为控制和诊断神经系统疾病(如成瘾、抑郁症和帕金森病)的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claire Nicole Bedbrook其他文献

Claire Nicole Bedbrook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claire Nicole Bedbrook', 18)}}的其他基金

Reprogramming organismal lifespan through modulation of neuropeptides
通过调节神经肽重新编程有机体寿命
  • 批准号:
    10507323
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Opsineering: Engineering Novel ChannelRhodospins for Optogenetics Applications
Opsineering:为光遗传学应用设计新型通道Rhodospins
  • 批准号:
    9125904
  • 财政年份:
    2014
  • 资助金额:
    $ 3.67万
  • 项目类别:

相似国自然基金

无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
加压素V1a受体靶向PET示踪剂开发及其在自闭症动物模型的显像研究
  • 批准号:
    82102107
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
自闭症动物模型听觉皮层声调谐异常及其机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
SHANK3自闭症动物模型跨物种转录组解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
自闭症动物模型嗅觉恐惧反应异常的神经环路解析
  • 批准号:
    31900715
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dopamine regulation of infant perceptual motor development and communication
多巴胺对婴儿知觉运动发育和交流的调节
  • 批准号:
    10735199
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Effects of early life sleep disruption on prefrontal cortex electrophysiological state and affiliation/attachment
生命早期睡眠中断对前额皮质电生理状态和归属/依恋的影响
  • 批准号:
    10734842
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Does microbiome composition moderate GI and CNS function in a VPA-induced mouse model of autism?
在 VPA 诱导的自闭症小鼠模型中,微生物组组成是否会调节胃肠道和中枢神经系统功能?
  • 批准号:
    10753699
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Prefrontal circuits in processing social versus non-social rewards
处理社交与非社交奖励的前额回路
  • 批准号:
    10660240
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Cortico-amydala circuit dysfunction underlying avoidance behaviors and aversive facial expressions to social touch in mouse models of autism
自闭症小鼠模型中皮质-杏仁核回路功能障碍是回避行为和厌恶社交接触的面部表情的基础
  • 批准号:
    10387673
  • 财政年份:
    2022
  • 资助金额:
    $ 3.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了