Cytoskeletal Membrane Anchors: Key Switchboards for Cellular Communication, Mecha
细胞骨架膜锚:细胞通信、机甲的关键交换机
基本信息
- 批准号:8725191
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesivesAffinityBehaviorBindingBiochemicalBiochemistryBiomedical EngineeringCadherinsCalciumCell CommunicationCell Surface ReceptorsCell membraneCell physiologyCell surfaceCellsCellular biologyChemicalsChemistryCollaborationsCommunicationComplexCustomCytoplasmic TailCytoskeletonDefectDiagnosisDiseaseDissociationDockingDrug usageElementsEventExtracellular DomainFailureFluorescenceFluorescent ProbesFoundationsFunctional ImagingFutureGeneric DrugsHomingImmuneIndividualInflammationInflammatoryIntegrinsLeukocytesLifeLigandsLinkMalignant NeoplasmsMeasurementMeasuresMechanical StimulationMechanical StressMechanicsMediatingMembraneMolecularMolecular BiologyN-CadherinNanotubesNatureNeoplasm MetastasisP-selectin ligand proteinPhysiologic pulsePhysiologicalPlayProcessProteinsReactionRegulationReporterResearchRoleRuptureSchemeSideSignal TransductionSiteSpectrum AnalysisStagingStimulusStressStructure-Activity RelationshipTechniquesTestingTimeTranslatingWorkadapter proteinbasebiophysical toolscancer cellcantilevercell motilityexperienceextracellularfightinggenetic manipulationinnovationinsightinstrumentinterestlaser tweezerleukocyte activationmechanical behaviormigrationnanoneutrophilnovelphysical propertyreceptorreceptor bindingresearch studyresponsesingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): A cell's communication with its surroundings is central to numerous physiological functions in both normal and diseased states. It requires that encounters with extracellular ligands can be "sensed" inside the cell, and conversely, that the strength of extracellular ligand-receptor interactions can be modulated by intracellular processes. Adapter proteins that link the cytoplasmic domains of cell-surface receptors to the cytoskeleton ("cytoskeletal membrane anchors") are likely to play a crucial biophysical role in this bidirectional communication, i.e., not only as cell-signaling messengers, but also as structural elements that mediate, and possibly regulate, a cell's response to mechanical stimuli. Accordingly, this application puts forward the paradigm that serial linkages of the form extracellular ligand - transmembrane receptor - cytoskeletal anchor - cortical actin represent functional units that act as key biophysical switchboards in cellular communication. Often such serial linkages are exposed to physical stress, in which case the strength hierarchy of individual molecular interactions, along with the physical properties of the plasma membrane and the actin cortex, provide the mechanistic foundation of their mechanoregulatory behavior. Understanding these complex mechanisms requires an interdisciplinary, nano-to-microscale approach. We propose to systematically dissect the individual contributions of the constituents of two types of serial transmembrane linkages. Aims 1 and 2 will establish the structural behavior of serial linkages involving the integrin LFA-1 and E- and N-cadherins. Aim 1 will focus on extracellular binding by quantifying the dynamics of formation and force-dependent failure of the respective receptor:ligand bonds (using cutting-edge force- probe instruments, i.e., our side-view AFM and optical tweezers). Aim 2 will examine the mechanical behavior and the molecular determinants of the cytoskeletal anchors of these receptors. Combining force probing and fluorescent functional imaging, Aim 3 will investigate how this structural organization correlates with cellula function. For example, we will explore the mechanisms of leukocyte activation by mechano-chemical stimuli. This strategy will open new avenues toward establishing a biologically plausible and physically realistic understanding of these remarkable mechanosignaling paths, and thus also toward novel bottom-up strategies for diagnosis and treatment of diseases.
描述(由申请人提供):一个细胞与周围环境的通信对于正常状态和患病状态的众多生理功能至关重要。它要求可以在细胞内“感觉到”与细胞外配体的相遇,相反,可以通过细胞内过程调节细胞外配体 - 受体相互作用的强度。将细胞表面受体的细胞质结构域与细胞骨架(“细胞骨架膜锚”)联系起来的适配器蛋白可能在这种双向通信中起着重要的生物物理作用,即在这种双向交流中起着重要的生物物理作用,即不仅是胞型签名元素,而且是结构性的元素该细胞对机械刺激的反应进行了介导,并可能调节。因此,该应用提出了一个范式,即形式的细胞外配体的串行连接 - 跨膜受体 - 细胞骨架锚定 - 皮质肌动蛋白代表功能单位,这些功能单位是细胞通信中关键生物物理切换板的功能单位。这种序列连接通常会暴露于身体压力,在这种情况下,单个分子相互作用的强度层次结构以及质膜和肌动蛋白皮质的物理特性为其机械调节行为提供了机械基础。了解这些复杂的机制需要跨学科的纳米至微观方法。我们建议系统地剖析两种类型的串行跨膜链接的成分的个体贡献。目标1和2将建立涉及整联蛋白LFA-1和E-和N-钙蛋白的串行连接的结构行为。 AIM 1将通过量化各个受体的形成动力和力依赖性失败:配体键(使用尖端的力探测器仪器,即我们的侧视图AFM和光学镊子),将重点放在细胞外结合上。 AIM 2将检查这些受体的细胞骨架锚固的机械行为和分子决定因素。 AIM 3结合力探测和荧光功能成像,将研究该结构组织与细胞函数的相关性。例如,我们将通过机械化学刺激探索白细胞激活的机制。该策略将开辟新的途径,以建立对这些出色的机械信号路径的生物学上合理和物理上现实的理解,从而朝着诊断和治疗疾病的新型自下而上策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volkmar Heinrich其他文献
Volkmar Heinrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volkmar Heinrich', 18)}}的其他基金
Cytoskeletal Membrane Anchors: Key Switchboards for Cellular Communication, Mecha
细胞骨架膜锚:细胞通信、机甲的关键交换机
- 批准号:
8534791 - 财政年份:2012
- 资助金额:
$ 29.6万 - 项目类别:
Cytoskeletal Membrane Anchors: Key Switchboards for Cellular Communication, Mecha
细胞骨架膜锚:细胞通信、机甲的关键交换机
- 批准号:
8265194 - 财政年份:2012
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
8088490 - 财政年份:2010
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
7380060 - 财政年份:2007
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
7771801 - 财政年份:2007
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
7264218 - 财政年份:2007
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
7572896 - 财政年份:2007
- 资助金额:
$ 29.6万 - 项目类别:
Integrative Experimental and Theoretical Studies of the Mechanics of Phagocytosis
吞噬作用机制的综合实验和理论研究
- 批准号:
8033754 - 财政年份:2007
- 资助金额:
$ 29.6万 - 项目类别:
相似国自然基金
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Basis and Function of Lateral Assembly of Cadherin Molecules in Adhesive Junctions of Humans and Model Organisms
人类和模型生物粘附连接中钙粘蛋白分子横向组装的基础和功能
- 批准号:
10715056 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Cadherin-catenin regulation in dividing epithelial cells
分裂上皮细胞中钙粘蛋白-连环蛋白的调节
- 批准号:
10194544 - 财政年份:2018
- 资助金额:
$ 29.6万 - 项目类别:
The Role of Integrin Affinity Modulation during Tumor Angiogenesis
整合素亲和力调节在肿瘤血管生成过程中的作用
- 批准号:
9752370 - 财政年份:2017
- 资助金额:
$ 29.6万 - 项目类别:
CONTROL OF ADAPTIVE IMMUNITY BY ACTIN-REGULATORY PROTEINS
肌动蛋白调节蛋白对适应性免疫的控制
- 批准号:
8824481 - 财政年份:2014
- 资助金额:
$ 29.6万 - 项目类别: