Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
基本信息
- 批准号:8632422
- 负责人:
- 金额:$ 54.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingArchitectureBindingChromatinCodeComplexComplex Genetic TraitComputer softwareComputing MethodologiesDNADataData SetDevelopmentDiagnosticDiseaseEuropeanExplosionFrequenciesFunctional RNAFutureGene ExpressionGene FrequencyGenesGeneticGenetic MarkersGenetic RiskGenetic VariationGenotypeGoalsHeightHeritabilityHumanIndividualLifeLinkage DisequilibriumLipidsMedicalMethodsMicroarray AnalysisModelingMyocardial InfarctionPatient SelectionPatientsPatternPerformancePhenotypePopulationPopulation GeneticsPopulation HeterogeneityProteinsPublicationsRiskSamplingStatistical MethodsStatistical ModelsStudy modelsTestingTherapeutic InterventionTrainingVariantWorkbasecase controlcell typedata acquisitiondisorder riskexomeexome sequencinggenetic variantgenome sequencinggenome wide association studyhuman diseaseimprovedinterestnext generationpublic health relevancerare variantsimulationtraittranscription factor
项目摘要
Understanding the relationship between genotype and phenotype is the central goal of genetics. Available
heritability estimates for many human traits of medical relevance suggest that 30-80% of phenotypic variation
is due to underlying genetic variation. The ability to predict phenotypes based on genotypes is the ultimate test
of our understanding of complex trait genetics. Since the dawn of complex trait genetics in the early 20th
century, progress has been limited by the availability of genetic data in well-phenotyped populations. Now, due
to the extraordinary progress in technology, microarray genotyping datasets, exome sequencing datasets and
targeted sequencing datasets are available for large clinically phenotyped populations, and functional data is
becoming available. A future explosion of whole-genome sequencing data is also widely anticipated. This shifts
the focus from data acquisition to data interpretation and development of computational and statistical methods
for predicting phenotypes from genotypes and functional information. We propose to develop new methods for
predicting phenotypes from genotypes and apply these methods to newly collected data on human complex
traits of direct medical interest, including both quantitative and disease traits. Our work on phenotype prediction
will be informative about the allelic architecture of complex traits and will provide guidance for future genetic
studies. From a practical perspective, there is an ongoing debate on the potential of genetic diagnostics in
identification of individuals at elevated risk for specific complex diseases early in life. If successful, genetic
diagnostics may inform selection of patients for early therapeutic intervention. However, the practical utility of
genetics in evaluating risk of complex diseases has not been proven and is widely debated. We will rigorously
test the hypothesis of the utility of genotype-based phenotypic predictions.
In Specific Aim 1 we will develop and test new statistical methods for predicting phenotypes from microarray
genotyping data. We will investigate several model selection and shrinkage strategies. We will evaluate
whether it is more efficient to estimate contributions of individual markers independently or to fit all markers
simultaneously. In Specific Aim 2 we will improve polygenic prediction in populations of diverse ancestry. It
is important that medical progress not be limited to European populations. Our methods will generate
predictions across human populations, accounting for population differences in allele frequencies, rates of
allelic variation and patterns of linkage disequilibrium. In Specific Aim 3 we will develop and test statistical
methods for predicting phenotypes from sequencing data. Sequencing data provide a distinct set of statistical
challenges because they contain low-frequency and rare allelic variants, and often the effects of individual rare
variants cannot be estimated. In Specific Aim 4 we will incorporate functional data into methods for
phenotype prediction. We will investigate whether incorporation of functional data can improve phenotype
predictions from genetic data.
了解基因型和表型之间的关系是遗传学的核心目标。可用的
许多人类相关性的许多人类特征的遗传力估计表明,30-80%的表型变化
是由于基本的遗传变异。根据基因型预测表型的能力是最终测试
我们对复杂性状遗传学的理解。自20世纪初期复杂性状遗传学的曙光以来
世纪,进展受到良好型人群中遗传数据的可用性的限制。现在,到期
对于技术的非凡进展,微阵列基因分型数据集,外显子组测序数据集和
有针对性的测序数据集可用于大型临床表型人群,功能数据为
可用。全基因组测序数据的未来爆炸也被广泛预期。这发生了变化
从数据获取到计算和统计方法的数据解释和开发的重点
用于预测基因型和功能信息的表型。我们建议开发新方法
预测基因型的表型,并将这些方法应用于新收集的人类复合物的数据
直接医疗利益的特征,包括定量和疾病特征。我们在表型预测方面的工作
关于复杂特征的等位基因结构的信息,将为未来的遗传提供指导
研究。从实际的角度来看,关于遗传诊断潜力的持续辩论
鉴定患有特定复杂疾病较早风险的个体。如果成功,遗传
诊断可能会为患者的选择提供早期治疗干预的选择。但是,实际实用性
评估复杂疾病风险的遗传因素尚未得到证明,并且被广泛争论。我们会严格
测试基于基因型的表型预测实用性的假设。
在特定目标1中,我们将开发和测试用于预测微阵列表型的新统计方法
基因分型数据。我们将研究几种模型选择和收缩策略。我们将评估
是独立估计单个标记的贡献还是适合所有标记的贡献更有效
同时地。在特定目标2中,我们将改善各种血统人群的多基因预测。它
重要的是,医疗进展不仅限于欧洲人口。我们的方法将生成
人口之间的预测,考虑等位基因频率的人口差异,率
连锁不平衡的等位基因变化和模式。在特定目标3中,我们将开发和测试统计
从测序数据预测表型的方法。测序数据提供了一组不同的统计
挑战是因为它们包含低频和罕见的等位基因变体,并且通常会产生稀有的影响
变体无法估计。在特定目标4中,我们将功能数据纳入
表型预测。我们将调查功能数据的合并是否可以改善表型
遗传数据的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIL SUNYAEV其他文献
SHAMIL SUNYAEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIL SUNYAEV', 18)}}的其他基金
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10441144 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10553953 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10152624 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10623515 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
8862508 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
9245712 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
9031772 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of engineered fasciocutaneous skin flaps
工程筋膜皮瓣的开发
- 批准号:
10715063 - 财政年份:2023
- 资助金额:
$ 54.33万 - 项目类别:
Functional genomics of GxE in cardiovascular disease: BPA, phthalates and their interactions with gene regulation
GxE 在心血管疾病中的功能基因组学:BPA、邻苯二甲酸盐及其与基因调控的相互作用
- 批准号:
10337539 - 财政年份:2022
- 资助金额:
$ 54.33万 - 项目类别:
Functional genomics of GxE in cardiovascular disease: BPA, phthalates and their interactions with gene regulation
GxE 在心血管疾病中的功能基因组学:BPA、邻苯二甲酸盐及其与基因调控的相互作用
- 批准号:
10621140 - 财政年份:2022
- 资助金额:
$ 54.33万 - 项目类别:
Defining the phenotype and cancer penetrance of CTNNA1 loss-of-function germline variants
定义 CTNNA1 功能丧失种系变异的表型和癌症外显率
- 批准号:
10578417 - 财政年份:2022
- 资助金额:
$ 54.33万 - 项目类别: