Models to Predict Prognosis and Benefit from Adjuvant Therapy in Renal Cell Carci
预测肾细胞癌预后和辅助治疗获益的模型
基本信息
- 批准号:8613470
- 负责人:
- 金额:$ 34.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-04 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAdjuvant TherapyAntineoplastic AgentsBAY 54-9085Biological AssayBiological MarkersBiologyBiopsy SpecimenCellsClinicalCoupledDataDetectionDevelopmentDiagnosisDiseaseDisease ManagementDouble-Blind MethodDrug CostsDrug TargetingElementsEndothelial CellsEndotheliumEnrollmentFutureGoalsHistologicImmunohistochemistryIn SituIncidenceMAP Kinase GeneMalignant NeoplasmsMasksMeasuresMediatingMediator of activation proteinMetastatic Renal Cell CancerMethodsModelingMulti-Institutional Clinical TrialNatural HistoryNeoplasm MetastasisNephrectomyNormal tissue morphologyOutputParaffin EmbeddingPathway interactionsPatient SelectionPatientsPharmaceutical PreparationsPharmacotherapyPhase III Clinical TrialsPlacebo ControlPlacebosPlatelet-Derived Growth FactorPrimary NeoplasmPrincipal InvestigatorProteinsRandomizedRelapseRenal Cell CarcinomaRenal carcinomaResistanceRestSamplingSignal TransductionSpecimenStagingStaining methodStainsSystemSystemic TherapyTechnologyTestingTherapeuticTissuesToxic effectTrainingTyrosine Kinase InhibitorVHL mutationValidationVascular Endothelial Growth Factor ReceptorVascular Endothelial Growth Factor Receptor-3Vascular Endothelial Growth FactorsWorkangiogenesisarmbasecancer cellcohortcostdensitydisease natural historyfluorophorehigh riskimprovedkidney cellmembermolecular markerneoplastic celloutcome forecastpredictive modelingprognosticpublic health relevancereceptorreceptor expressionresponsesuccesstumor
项目摘要
DESCRIPTION (provided by applicant): Successful development of targeted anti-cancer drugs is often coupled with predictive assays that enable selective treatment of patients more likely to benefit from therapy. Immunohistochemistry is often used to assess expression of drug targets, but it suffers from subjectivity and lack of quantitative measures. We developed a method for automated, quantitative analysis (AQUA) for assessing protein levels in situ. In response to PA-08-134, we propose to expand AQUA to simultaneously assess tumors and endothelial cells, and develop models to predict clinical benefit from adjuvant sorafenib and sunitinib for renal cell carcinoma (RCC), as well as models to predict prognosis in untreated patients. RCC has traditionally been a disease that is highly resistant to systemic therapy. However, multiple targeted therapies, including sorafenib and sunitinib, have recently revolutionized the approach to metastatic RCC. Both drugs are effective for subsets of RCC patients, and both are associated with some toxicity. Given their success in metastatic RCC, these drugs are being studied as adjuvant therapies in a large, randomized, double blinded, multi-center trial called E2805. Specimens are being collected on all patients, and they offer a unique opportunity to develop models to predict clinical benefit from these drugs and models to predict prognosis in untreated patients in a multi-center clinical trial setting on a very large cohort. Sorafenib and sunitinb have multiple targets, and our purpose is to identify the most important predictive marker/s. We will study angiogenic markers, members of the MAPK pathway and other known targets. In preliminary studies using AQUA, we showed that RCCs with high levels of vascular endothelial growth factor (VEGF) receptors in tumor cells tend to have lower microvessel density and poor survival. We hypothesize that patients with high VEGF receptor expression in TUMOR cells are more likely to benefit from therapy than those with high microvessel density. We will expand AQUA to enable concurrent assessment of targets in tumor and vessels, by masking the tumor and vessels with different fluorophores. We will establish staining conditions for all known targets of sorafenib and sunitinib and select mediators of angiogenesis in tumor, endothelium and adjacent normal tissue using historical cohorts of untreated RCC patients. We will then assess VHL mutations and expression of sorafenib and sunitinib targets in a training set (67%) of E2805 patients and generate predictive models for each of the drugs, to be validated in a testing set. Standard clinical co-variates and VHL mutational status will be incorporated into the model. We will also use these molecular markers and clinical co-variates to improve current prognostic models in the placebo-treated patients. These models can be used to select patients for the optimal adjuvant therapy for RCC (sorafenib, sunitinib or neither), and this approach can be studied in other clinical settings as well.
描述(由申请人提供):成功开发有针对性的抗癌药物,通常与预测性测定相结合,使患者的选择性治疗更有可能受益于治疗。免疫组织化学通常用于评估药物靶标的表达,但它具有主观性和缺乏定量措施。我们开发了一种自动定量分析(Aqua)的方法,用于评估原位蛋白质水平。为了响应PA-08-134,我们建议扩大Aqua,以同时评估肿瘤和内皮细胞,并开发模型,以预测辅助索拉非尼和Sunitinib辅助肾细胞癌(RCC)的临床益处,以及模型,以预测未经培训的患者的预后。 RCC传统上是一种对全身治疗高度抗药性的疾病。但是,包括索拉非尼和苏尼替尼在内的多种有针对性疗法最近彻底改变了转移性RCC的方法。两种药物对RCC患者的亚群都有效,并且都与某些毒性有关。鉴于它们在转移性RCC方面的成功,这些药物在大型,随机,双眼的多中心试验中被研究为辅助疗法,称为E2805。正在对所有患者收集标本,他们提供了一个独特的机会来开发模型,以预测这些药物和模型的临床益处,以预测在非常大的队列上的多中心临床试验环境中未经治疗的患者的预后。 Sorafenib和Sunitinb具有多个目标,我们的目的是确定最重要的预测标记。我们将研究血管生成标记,MAPK途径的成员和其他已知靶标。在使用Aqua的初步研究中,我们表明肿瘤细胞中具有高水平血管内皮生长因子(VEGF)受体的RCC往往具有较低的微血管密度和较差的存活率。我们假设肿瘤细胞中VEGF受体表达高的患者比微血管密度高的患者更有可能从治疗中受益。 我们将通过掩盖不同荧光团的肿瘤和血管来扩展Aqua,以同时评估肿瘤和血管中的靶标。我们将使用未经治疗的RCC患者的历史人群来为索拉非尼和舒尼尼的所有已知靶标建立染色条件,并选择肿瘤,内皮和邻近正常组织的血管生成介质。然后,我们将在E2805患者的训练集(67%)中评估Sorafenib和Sunitinib靶标的VHL突变和表达,并为每种药物产生预测模型,并在测试集中得到验证。标准的临床共同变化和VHL突变状态将纳入模型。我们还将使用这些分子标记物和临床共同变化来改善安慰剂治疗的患者中当前的预后模型。这些模型可用于选择患者的RCC最佳辅助治疗(Sorafenib,Sunitinib或两者),并且在其他临床环境中也可以研究这种方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harriet M. Kluger其他文献
Activity of cabozantinib (XL184) in metastatic melanoma: Results from a phase II randomized discontinuation trial (RDT).
卡博替尼 (XL184) 在转移性黑色素瘤中的活性:II 期随机停药试验 (RDT) 的结果。
- DOI:
10.1200/jco.2012.30.15_suppl.8531 - 发表时间:
2012 - 期刊:
- 影响因子:45.3
- 作者:
Michael S. Gordon;Harriet M. Kluger;G. Shapiro;R. Kurzrock;G. Edelman;Thomas A. Samuel;A. Moussa;D. Ramies;A. D. Laird;F. Schimmoller;Xiao;A. Daud - 通讯作者:
A. Daud
Clonal determinants of organotropism and survival in metastatic uveal melanoma
转移性葡萄膜黑色素瘤器官趋向性和生存的克隆决定因素
- DOI:
10.1101/2024.05.14.593919 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bailey S.C.L. Jones;Patrick C. Demkowicz;Mitchelle Matesva;Renelle Pointdujour Lim;John H. Sinard;Antonietta Bacchiocchi;Ruth Halaban;M. Bosenberg;Mario Sznol;Harriet M. Kluger;Mathieu F. Bakhoum - 通讯作者:
Mathieu F. Bakhoum
Harriet M. Kluger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harriet M. Kluger', 18)}}的其他基金
Dual-isotope SPECT imaging and immunophenotyping of immune cells to determine response to immunotherapy
双同位素 SPECT 成像和免疫细胞免疫表型分析以确定对免疫治疗的反应
- 批准号:
10590408 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
The Yale Cancer Center Calabresi Immuno-Oncology Training Program (IOTP)
耶鲁大学癌症中心卡拉布雷西免疫肿瘤学培训计划 (IOTP)
- 批准号:
9899739 - 财政年份:2018
- 资助金额:
$ 34.43万 - 项目类别:
YALE CANCER CENTER CALABRESI IMMUNO-ONCOLOGY TRAINING PROGRAM
耶鲁大学癌症中心卡拉布雷西免疫肿瘤学培训计划
- 批准号:
10646793 - 财政年份:2018
- 资助金额:
$ 34.43万 - 项目类别:
Yale SPORE in Lung Cancer Career Enhancement Program
耶鲁 SPORE 肺癌职业提升计划
- 批准号:
10203858 - 财政年份:2015
- 资助金额:
$ 34.43万 - 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
- 批准号:
8581535 - 财政年份:2013
- 资助金额:
$ 34.43万 - 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
- 批准号:
8692684 - 财政年份:2013
- 资助金额:
$ 34.43万 - 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
- 批准号:
9279067 - 财政年份:2013
- 资助金额:
$ 34.43万 - 项目类别:
Models to predict prognosis and benefit from adjuvant therapy in renal cell carci
预测肾细胞癌预后和辅助治疗获益的模型
- 批准号:
8085276 - 财政年份:2011
- 资助金额:
$ 34.43万 - 项目类别:
Models to predict prognosis and benefit from adjuvant therapy in renal cell carci
预测肾细胞癌预后和辅助治疗获益的模型
- 批准号:
8236884 - 财政年份:2011
- 资助金额:
$ 34.43万 - 项目类别:
Models to predict prognosis and benefit from adjuvant therapy in renal cell carci
预测肾细胞癌预后和辅助治疗获益的模型
- 批准号:
8444714 - 财政年份:2011
- 资助金额:
$ 34.43万 - 项目类别:
相似国自然基金
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
- 批准号:82302153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
- 批准号:32371465
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
- 批准号:82360356
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于深度学习和肿瘤-免疫-间质生物模型的肿瘤药物联合治疗疗效预测和辅助决策研究
- 批准号:72374119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
类病毒结构纳米载体辅助A型肉毒毒素膀胱内递送治疗膀胱过度活动症的设计和应用研究
- 批准号:82300874
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Role of necrosis in the evolution of highly metastatic and chemo-resistant breast cancers
坏死在高度转移性和化疗耐药性乳腺癌演变中的作用
- 批准号:
10736486 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Enhancing TET activity for the treatment of hematological malignancy
增强 TET 活性治疗血液恶性肿瘤
- 批准号:
10717715 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Human specific STING agonists for the treatment of cancer
用于治疗癌症的人类特异性 STING 激动剂
- 批准号:
10759593 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别:
Personalized Organoid-Chip Model For Drug Testing in Pancreatic Cancer
用于胰腺癌药物测试的个性化类器官芯片模型
- 批准号:
10570699 - 财政年份:2023
- 资助金额:
$ 34.43万 - 项目类别: