Cycling of circadian rhythm proteins
昼夜节律蛋白的循环
基本信息
- 批准号:8461162
- 负责人:
- 金额:$ 33.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Activity CyclesAddressAffectAllelesAmino AcidsAnimal BehaviorBehaviorBehavioralBiological AssayBlood PressureBody TemperatureCell Culture TechniquesCell NucleusCircadian RhythmsClock proteinCultured CellsCytoplasmDefectDrosophila genusDrosophila melanogasterDrosophila period proteinEventFamilyFeedbackFunctional disorderGenesGenetic ScreeningGenetic TranscriptionGoalsHormonalHourKineticsLeadLibrariesLightLinkMass Spectrum AnalysisMessenger RNAMetabolic DiseasesModificationMolecularMutateMutationNatureNuclearOrganismPathologyPeriodicityPhenotypePhosphorylationPhosphorylation SitePhosphotransferasesPhysiologicalPhysiological ProcessesPhysiologyPoint MutationPost-Translational RegulationProcessProtein Kinase CProtein Tyrosine KinaseProtein phosphataseProteinsRegulationRestRoleSecondary toSiteSleepSleep DisordersTestingThreonineTimeWorkbasebrain cellcasein kinase IIcircadian pacemakerflygenetic analysisinhibitor/antagonistinterestkinase inhibitorliver metabolismmutantnovelpublic health relevancereceptorresponseshift worksmall moleculetherapy developmenttooltumor growthubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant): The long-term goals are to understand the molecular basis of circadian (~24 hour) rhythms. These rhythms are controlled by clocks endogenous to most organisms and are manifest in many different physiological processes. Disrupted functioning of clocks has been associated with sleep disorders as well as other pathologies such as tumor growth. The molecular nature of the endogenous circadian clock was determined largely through studies done in the fruit fly, Drosophila melanogaster. These studies showed that the clock is composed of specific genes (so-called "clock genes") whose protein products regulate the synthesis of their own mRNAs at a specific time of day. The feedback loop thus generated drives the cycling of downstream physiological components which, in turn, drive rhythms of behavior and physiology. However, the mechanisms that maintain such feedback loops with a 24 hour periodicity are not understood. In addition, rhythms are often maintained under conditions where levels of some clock mRNAs, and sometimes even clock proteins, are held constant, indicating the critical role of post-translational regulation. Synchrony of the Drosophila clock to light also relies upon such post-translational mechanisms. We hypothesize that it is the feedback activity of clock proteins that must cycle in order to maintain clock function, and that the cycling of this activity is driven by temporal control of protein stability, nuclear expression and ability to repress transcription. These features of clock proteins are affected, to a large extent, by phosphorylation, but key regulatory steps have not been identified. We propose to use tools we have recently discovered/generated to dissect the post-translational regulation of the major cycling Drosophila proteins, period (PER) and timeless (TIM). We will also investigate the clock's response to light, which has its basis in the control of protein stability. Specific aims are to: (1) Determine the mechanisms underlying the behavioral phenotype of a novel tim allele We have identified a novel mutation of tim which affects the stability and nuclear localization of PER and TIM and the phosphorylation of PER. This provides us with a powerful tool to address the mechanisms underlying nuclear expression, and to determine the effect of subcellular localization on phosphorylation and stability; (2) Identify the functional significance of novel phosphorylation sites on PER and TIM. We have identified novel phosphorylation sites on PER and TIM through mass spectrometry analysis. We will investigate the role of these sites in the processes listed above; (3) Identify kinases required for the TIM response to light. Through a small molecule inhibitor screen, we have identified classes of kinase required for TIM degradation by light. We will identify the specific kinases involved.
描述(由申请人提供):长期目标是了解昼夜节律(~24 小时)节律的分子基础。这些节律由大多数生物体的内源性时钟控制,并表现在许多不同的生理过程中。生物钟功能紊乱与睡眠障碍以及肿瘤生长等其他疾病有关。内源生物钟的分子性质主要是通过对果蝇(Drosophila melanogaster)进行的研究来确定的。这些研究表明,生物钟由特定基因(所谓的“时钟基因”)组成,其蛋白质产物在一天中的特定时间调节其自身 mRNA 的合成。由此产生的反馈回路驱动下游生理成分的循环,进而驱动行为和生理的节律。然而,维持这种 24 小时周期反馈循环的机制尚不清楚。此外,节律通常在某些时钟 mRNA(有时甚至时钟蛋白)水平保持恒定的条件下得以维持,这表明翻译后调节的关键作用。果蝇时钟与光的同步也依赖于这种翻译后机制。我们假设时钟蛋白的反馈活性必须循环才能维持时钟功能,并且这种活性的循环是由蛋白质稳定性、核表达和抑制转录能力的时间控制驱动的。时钟蛋白的这些特征在很大程度上受到磷酸化的影响,但关键的调控步骤尚未确定。我们建议使用我们最近发现/生成的工具来剖析主要循环果蝇蛋白、周期(PER)和永恒(TIM)的翻译后调节。我们还将研究生物钟对光的响应,这在控制蛋白质稳定性方面有其基础。具体目标是: (1) 确定新 tim 等位基因行为表型的机制 我们已经鉴定了 tim 的新突变,它影响 PER 和 TIM 的稳定性和核定位以及 PER 的磷酸化。这为我们提供了一个强大的工具来解决核表达的机制,并确定亚细胞定位对磷酸化和稳定性的影响; (2) 鉴定PER和TIM上新磷酸化位点的功能意义。我们通过质谱分析确定了 PER 和 TIM 上的新磷酸化位点。我们将调查这些站点在上述流程中的作用; (3) 确定 TIM 光响应所需的激酶。通过小分子抑制剂筛选,我们确定了光降解 TIM 所需的激酶类别。我们将确定所涉及的特定激酶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMITA SEHGAL其他文献
AMITA SEHGAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMITA SEHGAL', 18)}}的其他基金
Balance of sleep and circadian metabolic switches in Drosophila
果蝇的睡眠平衡和昼夜代谢开关
- 批准号:
10407604 - 财政年份:2019
- 资助金额:
$ 33.51万 - 项目类别:
2017 Chronobiology Gordon Research Conference & Gordon Research Seminar
2017年时间生物学戈登研究会议
- 批准号:
9331037 - 财政年份:2017
- 资助金额:
$ 33.51万 - 项目类别:
2015 Chronobiology Gordon Research Conference & Gordon Research Seminar
2015年时间生物学戈登研究会议
- 批准号:
8963732 - 财政年份:2015
- 资助金额:
$ 33.51万 - 项目类别:
LOSS OF SLEEP CONSOLIDATION WITH AGE IN DROSOPHILA
果蝇睡眠巩固随着年龄的增长而丧失
- 批准号:
7192087 - 财政年份:2006
- 资助金额:
$ 33.51万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Effect of Sleep on Neural Circuit Connections
睡眠对神经回路连接的影响
- 批准号:
10739237 - 财政年份:2023
- 资助金额:
$ 33.51万 - 项目类别:
The Role of CCL5 in Hematopoietic Stem Cell Activation and Skewing
CCL5 在造血干细胞激活和倾斜中的作用
- 批准号:
10348737 - 财政年份:2021
- 资助金额:
$ 33.51万 - 项目类别:
Elucidating the role of circadian-gated cognitive disruption in Alzheimer’s disease pathogenesis
阐明昼夜节律门控认知破坏在阿尔茨海默病发病机制中的作用
- 批准号:
10450631 - 财政年份:2020
- 资助金额:
$ 33.51万 - 项目类别:
Bright light modulation of non-motor symptoms in Parkinson's disease
帕金森病非运动症状的亮光调节
- 批准号:
10054198 - 财政年份:2016
- 资助金额:
$ 33.51万 - 项目类别:
Statistical methods for analyzing objectively measured physical activity.
用于分析客观测量的身体活动的统计方法。
- 批准号:
10531088 - 财政年份:2016
- 资助金额:
$ 33.51万 - 项目类别: