Modulating Cell Phenotype during Tubulogenesis through 3D Micropatterning
通过 3D 微图案调节管发生过程中的细胞表型
基本信息
- 批准号:8595863
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdhesivesAffectAutomobile DrivingBehaviorBiocompatible MaterialsBiologicalBlood VesselsCancerousCellsCharacteristicsChemicalsChemistryComplexCuesCustomDevelopmentDiseaseElementsEndothelial CellsEnvironmentEthylene GlycolsEvaluationEventFibroblast Growth FactorGoalsGrowthGrowth FactorHuman DevelopmentHydrogelsIndividualLasersLeadLengthLigandsMalignant NeoplasmsMechanicsMethodsModelingModificationNetwork-basedNutrientOutcomeOxygenPatternPericytesPhenotypePhotochemistryPlatelet-Derived Growth FactorPlayPolyethylene GlycolsProceduresProcessPropertyProtocols documentationRelative (related person)RoleScanningSignal PathwaySignal TransductionSignaling MoleculeSpatial DistributionStructureTechniquesTechnologyTimeTissuesVariantVascular Endothelial Growth FactorsVascularizationWorkWound Healingangiogenesisbasecell behaviorethylene glycolextracellularlithographynovel therapeutic interventionprogramspublic health relevanceresponsespatiotemporaltumor progressiontwo-photon
项目摘要
DESCRIPTION (provided by applicant): Angiogenesis is a critical process in the formation of microvasculature to deliver nutrients and oxygen to target cells and tissues. During this process, endothelial cells respond to specific extracellular signals that cause them to migrate from existing vessels and form tubules through a process called tubulogenesis. Alterations or disruptions in these signaling mechanisms, though, can lead to the formation of unhealthy vessel structures, indicative of disease states (i.e. cancers). In this proposal, we aim to use micropatterned biomaterials to control the spatiotemporal elements of endothelial cell microenvironments, composed primarily of adhesive, mechanical, and diffusible/soluble cues. By observing and characterizing how endothelial cells manipulate and coordinate responses from their local microenvironment, we can classify their corresponding cellular phenotypes and tubule networks based upon their specific interactions with individual cues. To accomplish this, we will first create a two-photon-based patterning strategy capable of immobilizing multiple biomolecules in parallel within three dimensional (3D) poly(ethylene glycol) (PEG) hydrogels through the use of orthogonal photochemistries. In addition, we will incorporate new functionalities to allow the bulk hydrogel properties to be transiently modified. Using this technology we will create patterns of adhesive ligands within the hydrogel with bulk and localized (patterned) growth factors. By first controlling the spatial introduction of growth factos, we will investigate how we can control the initiation of tubulogenic events (i.e. branching) in 3D.
Furthermore, by employing the growth factors involved in wound healing: platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF), we will investigate how the order in which each growth factor is encountered as well as the display (i.e., bulk or locally immobilized) of the individual growth factors effects the relatie structure of the tubule network. Finally, we will explore the temporal introduction of these growth
factors and how their incorporation during tubulogenesis can alter, disrupt, or reinforce endothelial cell responses. From these studies, we anticipate that we can control the branching, elongation, and overall structure of the tubules that are formed. To verify this we will create a comprehensive method to characterize and classify tubule networks as well as the phenotype of the endothelial cells, themselves. Finally, the variations in the spatial and temporal introduction
should enable us to decouple these effects to create a tubulogenic model which will allow us to "pre-program" 3D cellular microenvironments to drive specific tubulogenic and phenotypic outcomes.
描述(由申请人提供):血管生成是微脉管系统形成中的关键过程,以将营养物和氧气输送到目标细胞和组织。在此过程中,内皮细胞对特定的细胞外信号做出反应,导致它们从现有血管迁移并通过称为肾小管发生的过程形成肾小管。然而,这些信号机制的改变或破坏可能导致不健康血管结构的形成,表明疾病状态(即癌症)。在本提案中,我们的目标是使用微图案生物材料来控制内皮细胞微环境的时空元素,该微环境主要由粘附性、机械性和可扩散/可溶性线索组成。通过观察和表征内皮细胞如何操纵和协调其局部微环境的反应,我们可以根据它们与个体线索的特定相互作用对它们相应的细胞表型和肾小管网络进行分类。为了实现这一目标,我们将首先创建一种基于双光子的图案化策略,能够通过使用正交光化学将多个生物分子并行固定在三维(3D)聚乙二醇(PEG)水凝胶内。此外,我们将整合新的功能,以允许瞬时改变本体水凝胶的特性。利用这项技术,我们将在水凝胶内创建具有大量和局部(图案化)生长因子的粘合剂配体图案。通过首先控制生长因子的空间引入,我们将研究如何在 3D 中控制管发生事件(即分支)的启动。
此外,通过使用参与伤口愈合的生长因子:血小板源性生长因子(PDGF)、血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF),我们将研究每种生长因子遇到的顺序以及个体生长因子的展示(即,大量或局部固定)影响小管网络的关系结构。最后,我们将探讨这些增长的时间引入
因子以及它们在肾小管发生过程中的掺入如何改变、破坏或增强内皮细胞反应。从这些研究中,我们预计我们可以控制所形成的小管的分支、伸长和整体结构。为了验证这一点,我们将创建一种综合方法来表征和分类肾小管网络以及内皮细胞本身的表型。最后,空间和时间的变化介绍
应该使我们能够解耦这些效应,以创建一个肾小管发生模型,该模型将使我们能够“预编程”3D细胞微环境,以驱动特定的肾小管发生和表型结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan M Schweller其他文献
Ryan M Schweller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan M Schweller', 18)}}的其他基金
Modulating Cell Phenotype during Tubulogenesis through 3D Micropatterning
通过 3D 微图案调节管发生过程中的细胞表型
- 批准号:
8725513 - 财政年份:2013
- 资助金额:
$ 4.92万 - 项目类别:
相似国自然基金
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Modulating Cell Phenotype during Tubulogenesis through 3D Micropatterning
通过 3D 微图案调节管发生过程中的细胞表型
- 批准号:
8725513 - 财政年份:2013
- 资助金额:
$ 4.92万 - 项目类别:
Borrelia burgdorferi-glycosaminoglycan interactions and Lyme disease pathogenesis
伯氏疏螺旋体-糖胺聚糖相互作用和莱姆病发病机制
- 批准号:
8291968 - 财政年份:2011
- 资助金额:
$ 4.92万 - 项目类别:
Borrelia burgdorferi-glycosaminoglycan interactions and Lyme disease pathogenesis
伯氏疏螺旋体-糖胺聚糖相互作用和莱姆病发病机制
- 批准号:
8493982 - 财政年份:2011
- 资助金额:
$ 4.92万 - 项目类别:
Borrelia burgdorferi-glycosaminoglycan interactions and Lyme disease pathogenesis
伯氏疏螺旋体-糖胺聚糖相互作用和莱姆病发病机制
- 批准号:
8718996 - 财政年份:2011
- 资助金额:
$ 4.92万 - 项目类别:
Borrelia burgdorferi-glycosaminoglycan interactions and Lyme disease pathogenesis
伯氏疏螺旋体-糖胺聚糖相互作用和莱姆病发病机制
- 批准号:
8871664 - 财政年份:2011
- 资助金额:
$ 4.92万 - 项目类别: