A novel antisense therapeutic for treatment of Aspergillus fumigatus infections
一种治疗烟曲霉感染的新型反义疗法
基本信息
- 批准号:8714774
- 负责人:
- 金额:$ 17.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimal ModelAntifungal AgentsAntifungal TherapyAntisense RNAAspergillosisAspergillusAspergillus fumigatusBacteriaBase PairingBiochemicalBiotechnologyCalcineurinCalcineurin inhibitorCandidaCandida albicansCandidiasisCause of DeathCell WallCellsCellular StressCharacteristicsClinicalCollectionCyclosporineDatabasesDefectDiseaseDrug resistanceEffectivenessEnsureEnzymesEssential GenesEvaluationFK506Fungal Drug ResistanceFutureGene TargetingGenesGoalsGrowthHigh Pressure Liquid ChromatographyHumanHuman Cell LineImmunocompromised HostImmunosuppressive AgentsIn VitroInfectionLabelLeadLiteratureMeasurableMeasuresMediatingMessenger RNAModelingMoldsMusMutationMycosesPathway interactionsPeptide LibraryPeptidesPerformancePharmaceutical PreparationsPhaseProtein phosphataseProteinsProteomicsResearchSerumSiteSushi DomainTestingTherapeuticTimeToxic effectToxicity TestsTreatment EfficacyVirulenceVirulence FactorsWestern BlottingWorkantimicrobialantisense nucleic acidbasebiological adaptation to stresscalcineurin phosphataseclinical efficacydesignfungusimmunosuppressedin vitro testingknock-downmembermortalitynew technologynovelnovel strategiesnovel therapeuticsnucleic acid analogpathogenphosphorodiamidate morpholino oligomerpublic health relevanceresistant strain
项目摘要
DESCRIPTION (provided by applicant): Guild proposes to develop an antisense oligomer-based antifungal effective against the human pathogen Aspergillus fumigatus. With a 40%-60% mortality rate, invasive aspergillosis (IA) due to A. fumigatus now surpasses invasive candidiasis as the most frequent fungal cause of death, especially amongst immunocompromised patients. Successful therapy for IA with current antifungals is notoriously difficult due to poor clinical efficacy and the increasing emergence of drug resistant strains. Despite this acute need for novel therapeutic strategies, there has not been a new class of antifungals targeting A. fumigatus developed in over 12 years. Therefore, a novel approach is urgently needed to develop new anti-Aspergillus targeting strategies. Phosphorodiamidate morpholino oligomers (PMOs), synthetic uncharged analogs of nucleic acids, are an antisense biotechnology that functions by base pairing with target gene mRNA, producing steric blockade of the translational machinery. PMOs have been investigated as antimicrobials against bacteria, but applications to fungal pathogens are rare. Our team has recently developed PMOs conjugated to cell penetrating peptides (CPPs) that inhibit the growth of the fungal pathogen Candida albicans. Calcineurin is a highly conserved protein phosphatase that is important in mediating cell stress responses. Research by our team has established that calcineurin is necessary for A. fumigatus growth, and its deletion produces numerous nonlethal defects. Inhibition of calcineurin halts invasive fungal disease. As proof of concept, a CPP-PMO will be developed against the A. fumigatus calcineurin A (CnaA) gene and tested In Vitro for pathway disruption and growth inhibition through the following specific aims. Aim 1. Identify a cell penetrating peptide that optimally accumulates within A. fumigatus and has minimal toxicity to human cells. A set of CPPs from the literature will be compared to the CPP developed against C. albicans. The top accumulating peptide will be optimized through competitive targeted peptide libraries, and then be tested for preliminary off-target toxicity in relevant human cell lines. Aim 2. Demonstrate successful knockdown of A. fumigatus CnaA using a CPP-PMO construct. A PMO will be designed against the start site of the cnaA gene and be conjugated to the CPP from Aim 1. The CPP- PMO will be tested on cultured A. fumigatus with endpoints of CnaA protein knockdown, downstream effector modulation, growth reduction, and off target toxicity. The CnaA inhibiting drug FK506 will be used as a positive CnaA inhibition control. Impact: This project will produce a CPP-PMO that disrupts A. fumigatus growth. In the Phase 2 project, we will evaluate CPP-PMOs against CnaA and other gene targets both alone and in combination with existing antifungal agents in immunosuppressed murine models of IA. This novel approach targeting a critical well- validated A. fumigatus virulence factor will significantl impact the future treatment paradigm of IA.
描述(由申请人提供):Guild 提议开发一种有效对抗人类病原体烟曲霉的基于反义寡聚物的抗真菌剂。由烟曲霉引起的侵袭性曲霉病 (IA) 的死亡率为 40%-60%,现已超过侵袭性念珠菌病,成为最常见的真菌死亡原因,尤其是在免疫功能低下的患者中。由于临床疗效不佳和耐药菌株的不断出现,目前的抗真菌药物很难成功治疗 IA。尽管迫切需要新的治疗策略,但 12 年来尚未开发出针对烟曲霉的新型抗真菌药物。因此,迫切需要一种新方法来开发新的抗曲霉靶向策略。磷酸二酰胺吗啉寡聚物 (PMO) 是一种合成的不带电荷的核酸类似物,是一种反义生物技术,通过与靶基因 mRNA 碱基配对发挥作用,产生翻译机制的空间封锁。 PMO 作为细菌抗菌剂已被研究,但应用于真菌病原体的情况很少。我们的团队最近开发了与细胞穿透肽 (CPP) 结合的 PMO,可抑制真菌病原体白色念珠菌的生长。钙调神经磷酸酶是一种高度保守的蛋白磷酸酶,对于介导细胞应激反应非常重要。我们团队的研究已经确定,钙调神经磷酸酶对于烟曲霉的生长是必需的,并且其缺失会产生许多非致命缺陷。抑制钙调神经磷酸酶可阻止侵袭性真菌病。作为概念验证,将针对烟曲霉钙调磷酸酶 A (CnaA) 基因开发 CPP-PMO,并通过以下具体目标进行体外途径破坏和生长抑制测试。目标 1. 鉴定一种可在烟曲霉内最佳积累且对人体细胞毒性最小的细胞穿透肽。文献中的一组 CPP 将与针对白色念珠菌开发的 CPP 进行比较。积累最高的肽将通过竞争性靶向肽库进行优化,然后在相关人体细胞系中进行初步脱靶毒性测试。目标 2. 展示使用 CPP-PMO 构建体成功敲低烟曲霉 CnaA。 PMO 将针对 cnaA 基因的起始位点进行设计,并与目标 1 中的 CPP 缀合。 CPP-PMO 将在培养的烟曲霉上进行测试,终点包括 CnaA 蛋白敲低、下游效应子调节、生长减少和脱靶毒性。 CnaA 抑制药物 FK506 将用作阳性 CnaA 抑制对照。影响:该项目将产生扰乱烟曲霉生长的 CPP-PMO。在第二阶段项目中,我们将在 IA 免疫抑制小鼠模型中单独评估 CPP-PMO 对抗 CnaA 和其他基因靶标的效果,以及与现有抗真菌药物联合使用的效果。这种针对关键的、经过充分验证的烟曲霉毒力因子的新方法将显着影响 IA 的未来治疗范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Augustine Anthony DiNovo其他文献
Augustine Anthony DiNovo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Antifungal discovery from previously uncultivated bacteria
从以前未培养的细菌中发现抗真菌药物
- 批准号:
10693593 - 财政年份:2023
- 资助金额:
$ 17.01万 - 项目类别:
Screening Repurposing Libraries for the Identification of Drugs with Novel anti-Coccidioidal Activity
筛选再利用文库以鉴定具有新型抗球虫活性的药物
- 批准号:
10541230 - 财政年份:2022
- 资助金额:
$ 17.01万 - 项目类别:
The temporal dynamics of translation efficiency during an innate immune response
先天免疫反应过程中翻译效率的时间动态
- 批准号:
10507565 - 财政年份:2022
- 资助金额:
$ 17.01万 - 项目类别:
Screening Repurposing Libraries for the Identification of Drugs with Novel anti-Coccidioidal Activity
筛选再利用文库以鉴定具有新型抗球虫活性的药物
- 批准号:
10363480 - 财政年份:2022
- 资助金额:
$ 17.01万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10593999 - 财政年份:2022
- 资助金额:
$ 17.01万 - 项目类别: