Three Dimensional Printing of Custom Foot Orthoses to Treat Flexible Flat Feet

三维打印定制足部矫形器治疗柔性扁平足

基本信息

  • 批准号:
    8710801
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): During Phase I of this project, Seraph Robotics will complete development and initial feasibility testing of a working prototype of a specialized 3D Printer Orthosis System for creation of multi-property custom foot orthoses. The methods to be employed include the selection of materials that are of the highest quality and have appropriate properties for the supporting and cushioning functions of 3D printed orthoses; development of a process for printing custom orthotics based on a clinician's prescription; and a small pilot study to compare the effects of orthotics created with Seraph technology vs. custom-molded foot orthotics on foot structure, function, and clinical outcomes in typically developing children with flexible flatfoot. Flatfoot is a medical condition in which the longitudinal arch of the foot is abnormally lowered, and may come into near or complete contact with the ground. If left untreated, pediatric flatfoot can result in permanent deformity as an adult, which makes mobility and exercise painful, thus increasing the risk of obesity and reduced cardiovascular health. The incidence of moderate-to-severe pediatric flatfoot is about 18% of the general population, and pediatric flexible flatfoot also has an extremely high (83%) prevalence in children with Down Syndrome, as well as in children who are overweight. Furthermore, more than half of all Americans have missed a day of work because of foot problems. Custom-molded, full-length orthotic inserts are commonly prescribed for pediatric flexible flatfoot patients, but current technologies to create these devices typically cost $200-$800 per pair, and have a manufacturing lead time of up to four weeks. Seraph's solution is a specialized, patent-pending additive manufacturing (3D Printing) system that utilizes digitized anatomical and clinical data to fabricate orthotics that can exhibit a wide range of precisely prescribed mechanical properties. The system being refined at Seraph offers advantages over manual fabrication and direct milling in speed, cost, control, and flexibility such as digitally varying the orthotic's compression properties (i.e., Young's Modulus) across different regions. Seraph's unique additive manufacturing process is able to alter physical properties by using specialized printing technology and materials, which will result in better, more effective foot orthoses. Seraph's system reduces waste and cost by eliminating manual labor from the manufacturing process and the expensive excess material discarded in subtractive, milling processes which carve orthotics from a solid block. Furthermore, if feasibility is shown with Seraph's technology in Phase I then the technology could be applied to create orthoses for individuals with pedal pathologies such as cerebral palsy in Phase II.
描述(由申请人提供):在该项目的第一阶段,Seraph Robotics 将完成专用 3D 打印机矫形器系统工作原型的开发和初步可行性测试,用于创建多属性定制足部矫形器。采用的方法包括选择最高质量且具有适当性能的材料,以实现 3D 打印矫形器的支撑和缓冲功能;开发根据临床医生处方打印定制矫形器的流程;一项小型试点研究比较了采用 Seraph 技术制造的矫形器与定制模制足部矫形器对典型发育中的柔性平足儿童的足部结构、功能和临床结果的影响。扁平足是一种足部纵弓异常降低、可能接近或完全接触地面的疾病。如果不及时治疗,小儿平足症可能会导致成年后永久性畸形,从而导致活动和运动疼痛,从而增加肥胖风险并降低心血管健康。中度至重度小儿平足的发病率约为总人口的 18%,而小儿柔性平足在唐氏综合症儿童以及超重儿童中的患病率也极高 (83%)。此外,超过一半的美国人因为脚部问题而缺勤一天。定制模制的全长矫形垫片通常用于儿科柔性平足患者,但目前制造这些设备的技术通常每对成本为 200 至 800 美元,并且制造周期长达 4 周。 Seraph 的解决方案是一种专门的、正在申请专利的增材制造 (3D 打印) 系统,它利用数字化的解剖和临床数据来 制造可以表现出各种精确规定的机械性能的矫形器。 Seraph 正在完善的系统在速度、成本、控制和灵活性方面比手动制造和直接铣​​削具有优势,例如在不同区域以数字方式改变矫形器的压缩特性(即杨氏模量)。 Seraph 独特的增材制造工艺能够通过使用专门的印刷技术和材料来改变物理特性,从而生产出更好、更有效的足部矫形器。 Seraph 的系统消除了制造过程中的体力劳动以及在从实心块上雕刻矫形器的减材铣削过程中丢弃的昂贵的多余材料,从而减少了浪费和成本。此外,如果 Seraph 的技术在第一阶段显示出可行性,那么该技术可以在第二阶段应用于为患有踏板疾病(例如脑瘫)的个体制造矫形器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Lipton其他文献

Jeffrey Lipton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
  • 批准号:
    10837289
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
  • 批准号:
    10373762
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
  • 批准号:
    10629168
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
  • 批准号:
    10624329
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
  • 批准号:
    10301622
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了