3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation
3D 微可寻址组织模型,用于了解转录调控中的时空异质性
基本信息
- 批准号:8823915
- 负责人:
- 金额:$ 18.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnti-Inflammatory AgentsAnti-inflammatoryAntibiotic ResistanceApoptoticBacterial Antibiotic ResistanceBiocompatible MaterialsBiologyBlood VesselsBrain NeoplasmsCell CountCell Culture TechniquesCell SurvivalCellsCellular StressCellular Stress ResponseCharacteristicsChemicalsClinicalComplexDegenerative DisorderDevelopmentEngineeringEpigenetic ProcessEventExhibitsExposure toExtracellular MatrixGenesGeneticGenetic TranscriptionGoalsHeterogeneityHydrogelsHypoxiaImageIn VitroInjuryLeadMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMedicineMetabolismMethodsMicrobial BiofilmsMicrofluidicsModelingMolecularMotionNF-kappa BOpticsOxygenPharmaceutical PreparationsPhenotypePhysiologicalPlayPopulationProcessRegulationResearchResolutionRoleSample SizeSamplingSignal TransductionStagingStem cellsTechniquesTechnologyTestingTissue EngineeringTissue ModelTissuesTranscriptional RegulationTumor TissueValidationVariantWorkbasebiological adaptation to stresscellular engineeringchemotherapychromatin immunoprecipitationcytotoxicdrug distributionflexibilityin vivoinsightintercellular communicationnovelpublic health relevanceresearch studyresponsespatiotemporalstem cell therapytooltumor
项目摘要
DESCRIPTION: 3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation Advanced In vitro cell culture platforms have the potential to reveal the complex transcriptional and epigenetic regulation of cellular stress response and adaptation dynamics, which is challenging or impossible to study in vivo due to the inherent complexity of animal models, inability to experimentally manipulate the vast majority of tissue parameters, and a lack of high spatiotemporal resolution measurement techniques. Because of advances in tissue engineering and biomaterials, these platforms furthermore provide an ever-closer approximation of the physiological tissue microenvironment, reducing the need for in vivo experiments at earlier stages of research. Such studies will have important applications in our understanding of antibiotic resistance, personalized cancer medicine, and the development of effective and safe stem cell therapies. However, illustration of the complex molecular mechanisms behind the phenotype changes has been highly limited, and enabling tools to study the dynamics of such processes at high spatiotemporal resolution will provide new windows into previously inaccessible biology. While micro fabrication strategies have enabled well-defined heterogeneous model tissues, broad-spectrum genetic or epigenetic analysis of cells residing within micro scale tissue niches has not been possible. Our broad hypothesis is that spatiotemporal heterogeneity at micron scales impacts cellular stress response via transcriptional mechanisms, and that expanding the capabilities of physiologically relevant in vitro platforms will provide a powerful, broad spectrum, high-resolution tool to understand these dynamics. We will work towards our goals by pursuing two synergistic paths: 1) build on our prior microfluidic vascular tissue models to develop a brain tumor tissue mimic exhibiting the key chemo-mechano-cellular features regulating drug distribution, metabolism and chemoresistance development in vivo, and 2) extend our ability to analyze transcription level regulation via chromatin immunoprecipitation (ChIP), which we have already demonstrated on as few as 50 cells, to measure the role played by NF-kB in the interplay between spatiotemporal oxygen variations and cytotoxic stress response. The capabilities developed in this project will greatly enhance the utility of 3D cell culture models, and will provide access to the transcriptional machinery underlying stress response in a broad range of contexts.
描述:3D微调组织模型,以了解转录调控中时空异质性的高级体外细胞培养平台的潜力有可能揭示细胞应力响应和适应动态的复杂转录和表观遗传调节,这是挑战性或不可能在Vivo中进行研究对于动物模型的固有复杂性,无法实验操纵绝大多数组织参数,并且缺乏高时空分辨率测量技术。由于组织工程和生物材料的进步,这些平台还提供了生理组织微环境的不断闭合近似,从而减少了在研究的早期阶段对体内实验的需求。此类研究将在我们对抗生素耐药性,个性化癌症医学以及有效和安全的干细胞疗法的发展中有重要的应用。然而,表型变化背后的复杂分子机制的说明受到了很高的限制,并且可以使工具研究高时空分辨率下此类过程的动力学,这将为以前无法访问的生物学提供新的窗口。尽管微制造策略已实现了明确的异质模型组织,但对居住在微尺度组织壁ches中的细胞的广谱遗传或表观遗传分析是不可能的。我们广泛的假设是,在微米尺度上的时空异质性通过转录机制影响细胞应力反应,并且扩大生理上相关的体外平台能力将提供一个强大的,广泛的高分辨率高分辨率工具,以了解这些动力学。我们将通过追求两种协同的途径来朝着我们的目标努力:1)建立在我们先前的微流体血管组织模型上,以开发脑肿瘤组织模仿,表现出关键的化学元素 - 机电 - 细胞特征,可调节药物分布,代谢和化学疗法和化学疗法的发展,以及体内的化学疗法和化学疗法的发展,以及体内的化学效果。 2)扩展了我们通过染色质免疫沉淀(CHIP)分析转录水平调节的能力,我们已经在50个细胞上证明了转录水平调节,以测量NF-KB在时空氧变化和细胞毒性应激反应之间相互作用中所起的作用。该项目中开发的功能将极大地增强3D细胞培养模型的实用性,并将在广泛的环境中提供对压力响应的转录机械的访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott S Verbridge其他文献
Scott S Verbridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott S Verbridge', 18)}}的其他基金
3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation
3D 微可寻址组织模型,用于了解转录调控中的时空异质性
- 批准号:
8935781 - 财政年份:2014
- 资助金额:
$ 18.57万 - 项目类别:
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Human Dopamine Grafts in Alpha-Synuclein Models of Parkinson Disease
帕金森病α-突触核蛋白模型中的人多巴胺移植物
- 批准号:
10736403 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别: