Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
基本信息
- 批准号:8629133
- 负责人:
- 金额:$ 37.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanAnisotropyBiologyCardiacCellsChemicalsCicatrixCollagenCollagen FiberComputer SimulationCoupledCytoskeletonDataDepositionDevelopmentElementsEnvironmentEventEvolutionExperimental ModelsFiberFibroblastsGoalsHealedHeartHeart failureIn VitroIndividualInfarctionInjection of therapeutic agentLeadLeft ventricular structureMeasurementMeasuresMechanicsModelingMyocardial InfarctionMyocardiumOperative Surgical ProceduresPatientsPatternPolymersPropertyRegulationResearch PersonnelRestRiskRoleRuptureSignal TransductionStimulusStretchingStructureTestingTherapeutic InterventionTimeTissuesWorkWound Healingbasedensitydesignhealingheart functionimprovedin vivoinnovationinsightmigrationmulti-scale modelingnew therapeutic targetnovelnovel therapeutic interventionpredictive modelingpublic health relevanceresearch studyresponserestraintscreeningtherapy designtool
项目摘要
Over a million Americans suffer a heart attack (myocardial infarction) each year. For the majority who
survive the initial event, the risks of serious complications such as infarct rupture and heart failure
depend on the structure and mechanical properties of the scar tissue that replaces damaged heart
muscle over the first few weeks. That scar tissue is produced by cardiac fibroblasts, and we recently
showed that scar structure and mechanical properties are strongly influenced by mechanical stretch
during healing. The biology of how fibroblasts respond to individual signals such as mechanical stretch
has been studied extensively; yet we still understand relatively little about how fibroblasts integrate and
respond to the multiple signals present in a healing wound. We therefore developed an agent-based
model (ABM) of scar formation that represents individual fibroblasts - each migrating, aligning,
depositing and remodeling collagen, dividing, dying, and responding to individual chemical, structural,
and mechanical signals according to experimental measurements - and predicts the resulting evolution
of tissue-level collagen content and fiber alignment in scars healing under different patterns of stretch.
Here, we propose to couple this ABM with a finite-element model (FEM) of the infarct left ventricle to
produce a coupled model that can predict the dynamic interplay between evolving scar structure, scar
mechanics, and heart function after infarction and in response to therapies that alter infarct mechanics
(Aim 1). Then, we will use a combination of experiments and modeling to better understand the cellular
mechanisms by which mechanical stretch regulates collagen content and alignment in healing
myocardial infarcts. Specifically, we will test the hypotheses that mechanical regulation of collagen
degradation significantly influences collagen content and alignment during mechanical unloading (Aim
2), and that scar compaction significantly influences collagen fiber density but not in-plane fiber
alignment across a range of loading conditions (Aim 3). The proposed studies are potentially significant
both because they will generate the first validated, predictive model of infarct healing across a range of
mechanical conditions - enabling computational screening and design of novel therapies - and
because they will provide important new insight into the cellular mechanisms by which mechanical
environment regulates scar formation, which could lead to the identification of new therapeutic
approaches to modulating infarct healing.
每年有超过一百万的美国人心脏病发作(心肌梗塞)。对于大多数人
在初始事件中生存,严重并发症(例如梗塞破裂和心力衰竭)的风险
取决于取代受损心脏的疤痕组织的结构和机械性能
肌肉在头几周。疤痕组织是由心脏成纤维细胞产生的,我们最近
表明疤痕结构和机械性能受到机械拉伸的强烈影响
在康复期间。成纤维细胞如何响应单个信号(例如机械拉伸)的生物学
已经广泛研究了;然而,我们仍然对成纤维细胞的整合和
响应愈合伤口中存在的多个信号。因此,我们开发了一个基于代理的
代表单个成纤维细胞的疤痕形成模型(ABM) - 每个迁移,对准,
沉积和重塑胶原蛋白,分裂,垂死并响应单个化学,结构,
根据实验测量值和机械信号 - 并预测所得的进化
在不同的拉伸模式下,疤痕愈合中组织水平的胶原蛋白含量和纤维对齐。
在这里,我们建议将此ABM与梗塞左心室的有限元元素模型(FEM)搭配到
产生一个耦合模型,该模型可以预测不断发展的疤痕结构之间的动态相互作用
力学和梗塞后心脏功能以及响应改变梗塞力学的疗法
(目标1)。然后,我们将使用实验和建模的组合来更好地了解细胞
机械拉伸调节胶原蛋白含量和愈合中对齐的机制
心肌梗塞。具体而言,我们将测试胶原蛋白的机械调节的假设
降解在机械卸载过程中显着影响胶原蛋白的含量和对齐(目标
2),疤痕压实显着影响胶原蛋白纤维密度,但面积内纤维不影响
在一系列加载条件下对齐(AIM 3)。拟议的研究可能是重要的
这两者都是因为它们将在一系列范围内生成第一个经过验证的梗死愈合的预测模型
机械条件 - 实现新疗法的计算筛查和设计 - 和
因为它们将为细胞机制提供重要的新见解
环境调节疤痕形成,这可能导致新的治疗性识别
调节梗塞愈合的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY W HOLMES其他文献
JEFFREY W HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY W HOLMES', 18)}}的其他基金
Systems Pharmacology Model for Spatial Control of Cardiac Fibrosis
心脏纤维化空间控制的系统药理学模型
- 批准号:
9363220 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
2017 Summer Biomechanics, Bioengineering and Biotransport Conference
2017夏季生物力学、生物工程与生物转运会议
- 批准号:
9330598 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
Multiscale Models of Cardiac Growth, Remodeling, and Myocardial Infarction
心脏生长、重塑和心肌梗死的多尺度模型
- 批准号:
9144435 - 财政年份:2015
- 资助金额:
$ 37.3万 - 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
- 批准号:
8916817 - 财政年份:2014
- 资助金额:
$ 37.3万 - 项目类别:
Computational Modeling of Scar Formation After Myocardial Infarction
心肌梗塞后疤痕形成的计算模型
- 批准号:
9131778 - 财政年份:2014
- 资助金额:
$ 37.3万 - 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
- 批准号:
8403788 - 财政年份:2012
- 资助金额:
$ 37.3万 - 项目类别:
Anisotropic Reinforcement to Improve Post-Infarction LV Function
各向异性强化可改善梗塞后左心室功能
- 批准号:
8223807 - 财政年份:2012
- 资助金额:
$ 37.3万 - 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
- 批准号:
8169343 - 财政年份:2010
- 资助金额:
$ 37.3万 - 项目类别:
PARAMETERIZATION OF CARDIAC WALL MOTION: REUNITING ENGINEERING & CARDIOLOGY
心壁运动的参数化:重新结合工程
- 批准号:
7955232 - 财政年份:2009
- 资助金额:
$ 37.3万 - 项目类别:
MODEL-BASED DEVELOPMENT OF NEW DIAGNOSTIC MEASURES
基于模型的新诊断措施开发
- 批准号:
7955292 - 财政年份:2009
- 资助金额:
$ 37.3万 - 项目类别:
相似国自然基金
非线性耦合问题的各向异性高精度有限元方法新模式研究
- 批准号:12301474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于增材制造吸能点阵材料的各向异性冲击响应研究及调控设计
- 批准号:12302475
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
各向异性复合材料微通道内碳氢燃料的流动换热机理研究
- 批准号:52302478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晋冀交界地区地幔包体变形组构与地震波各向异性的关系及对华北克拉通破坏的启示
- 批准号:42304106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单轴各向异性介质中电磁散射问题快速求解算法
- 批准号:12371394
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 37.3万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10301622 - 财政年份:2021
- 资助金额:
$ 37.3万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10468156 - 财政年份:2021
- 资助金额:
$ 37.3万 - 项目类别:
Multidimensional Assessment of Brain Health as A Marker of Dementia Risk and Resilience
大脑健康的多维评估作为痴呆症风险和复原力的标志
- 批准号:
10670132 - 财政年份:2020
- 资助金额:
$ 37.3万 - 项目类别:
Multidimensional Assessment of Brain Health as A Marker of Dementia Risk and Resilience
大脑健康的多维评估作为痴呆症风险和复原力的标志
- 批准号:
10451624 - 财政年份:2020
- 资助金额:
$ 37.3万 - 项目类别: