Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
基本信息
- 批准号:8790875
- 负责人:
- 金额:$ 9.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAdaptor Signaling ProteinAddressAffectAxonAxonal TransportBacterial Artificial ChromosomesBindingBiochemicalBiochemical GeneticsBiological AssayCalciumCarrier ProteinsCell physiologyCellsComplexDataDefectDepositionDiseaseDissectionDynein ATPaseElementsEmbryoEndosomesEngineeringExhibitsFamilyGDNF geneGene Transfer TechniquesGeneticGenetic ScreeningGoalsGrowth ConesGrowth FactorHomeostasisImageImaging DeviceInitiator CodonInterruptionKinesinLarvaLightLinkLocationMAPK8 geneMaintenanceMammalian CellMammalsMass Spectrum AnalysisMediatingMediator of activation proteinMitochondriaMolecularMotorMovementMutationNeurodegenerative DisordersOrganellesPhasePhenotypePositioning AttributePresynaptic TerminalsProcessProteinsProtocols documentationReagentReceptor Protein-Tyrosine KinasesRecyclingRegulationResearch PersonnelRoleSequence AnalysisSignal TransductionSpecificitySwellingSynapsesSystemTechniquesTestingTherapeuticTransgenic OrganismsWorkZebrafishanterograde transportaxon growthbasecalcium metabolismcell motilitydeep sequencingdesigndynactinin vivoin vivo imagingmembermutantnervous system disorderneural circuitneuronal cell bodyneuronal survivalnovelnull mutationpromoterpublic health relevanceresearch studyretrograde transportskillstool
项目摘要
DESCRIPTION (provided by applicant): Axonal transport of proteins and organelles between the neuronal cell body and axon terminals is essential for axon outgrowth, formation of functional synapses, and neuronal survival. While anterograde transport (cell body to axon terminal) relies on the large family of kinesin motor proteins, retrograde cargo transport (from axon terminals towards the cell body) primarily utilizes one motor complex, cytoplasmic dynein. How cargo binds to this single motor selectively and is transported to the proper location is largely unknown. It has been postulated that this process involves adaptor proteins, which bind cargo to either the core dynein motor complex or its accessory complex, dynactin. My long-term goals are to identify mediators of specific retrograde cargo transport, define their function and determine how disruption of this process impacts circuit formation and activity. Because of their unique genetic tools and imaging accessibility, zebrafish are the ideal system to study retrograde axonal transport and the functional consequences of its disruption in an intact vertebrate. Importantly, most cellular processes that regulate axonal transport are highly conserved between mammals and zebrafish. To begin addressing my goals, I used a forward genetic screen to identify four mutant strains that display phenotypes indicative of interrupted retrograde cargo transport, including axon terminal swellings. One of these strains carries a mutation in JNK-interacting protein 3 (Jip3). Preliminary analyses revealed that jip3 mutants exhibit truncation of long axons and accumulation of activated Ret (GDNF responsive receptor tyrosine kinase) in mutant axon growth cones. In Aim 1, I will address the hypothesis that Jip3 serves as an adaptor protein required for retrograde transport of Ret signaling endosomes, which is necessary for axon extension. The second mutant identified in my screen displays accumulation of mitochondria in axon terminal swellings due to interrupted retrograde transport of this organelle. Anterograde mitochondrial transport and retrograde transport of other cargos are normal. The phenotype in this mutant is due to loss of Actr10, a known member of the dynein accessory complex, dynactin. In Aim 2, I will determine whether Actr10 functions as an adaptor mediating retrograde transport of mitochondria using in vivo imaging and biochemical dissection of interaction domains in the Actr10 protein. In Aim 3, I will use my established protocols and new techniques to determine if retrograde transport of specific cargos is disrupted in my additional novel mutants and how these defects affect function of the circuit. My preliminary data show that these strains have mutations in known dynein interactors, all with unknown functions in axonal transport. Finally, in Aim 4, I will engineer transgenic zebrafish strains which will be used to identify the Actr10 interactome and further dissect the molecular mechanisms that govern retrograde axonal transport of specific cargos. With the data, skill sets, and tools acquired from the proposed experiments, I will be poised to decipher the modulation of retrograde axonal transport of various cargos as an independent investigator.
描述(由申请人提供):神经元细胞体和轴突末端之间蛋白质和细胞器的轴突运输对于轴突出生,功能突触的形成和神经元存活至关重要。尽管顺行传输(到轴突末端)依赖于大型驱动蛋白运动蛋白家族,而逆行货物转运(从轴突末端向细胞体)主要利用一种运动复合物,细胞质动力蛋白。货物如何选择性地与该单一电动机结合并将其运输到正确的位置是未知的。据推测,此过程涉及衔接蛋白,该蛋白将货物与核心动力蛋白运动复合物或其辅助复合物Dynactin结合。我的长期目标是确定特定逆行货物运输的介体,定义其功能并确定该过程的破坏如何影响电路形成和活动。由于其独特的遗传工具和成像可及性,斑马鱼是研究逆行轴突运输的理想系统,以及其在完整脊椎动物中破坏的功能后果。重要的是,大多数调节轴突转运的细胞过程在哺乳动物和斑马鱼之间高度保守。为了开始解决我的目标,我使用了一个正向遗传筛选来识别四个突变菌株,这些突变体菌株显示表现表明中断逆行货物运输的表型,包括轴突末端肿胀。这些菌株之一在JNK相互作用蛋白3(JIP3)中带有突变。初步分析表明,JIP3突变体在突变体轴突生长锥中表现出长轴突的截断和活化RET(GDNF响应受体酪氨酸激酶)的积累。在AIM 1中,我将解决以下假设:JIP3用作RET信号内体逆行运输所需的衔接蛋白,这对于轴突延伸是必不可少的。我屏幕上鉴定出的第二个突变体显示由于该细胞器的逆行转运中断,线粒体在轴突末端肿胀中的积累。其他兑换的顺行线粒体运输和逆行运输是正常的。该突变体中的表型归因于ACTR10的丧失,ACTR10是Dynein辅助复合物Dynactin的已知成员。在AIM 2中,我将确定ACTR11是否用体内成像和ACTR10蛋白质中相互作用域的生化解剖来介导线粒体的逆行转运。在AIM 3中,我将使用我已建立的方案和新技术来确定在我的其他新型突变体中是否破坏了特定货物的逆行运输以及这些缺陷如何影响电路的功能。我的初步数据表明,这些菌株在已知的动力蛋白相互作用器中具有突变,所有这些都在轴突运输中具有未知功能。最后,在AIM 4中,我将设计转基因斑马鱼菌株,该菌株将用于鉴定ACTR10相互作用组,并进一步剖析主管特定千月的逆行轴突转运的分子机制。通过从提议的实验中获取的数据,技能和工具,我将准备破译各种cargos作为独立研究者的逆行轴突运输的调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine M Drerup其他文献
Catherine M Drerup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine M Drerup', 18)}}的其他基金
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10340724 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8862557 - 财政年份:2014
- 资助金额:
$ 9.07万 - 项目类别:
In vivo analysis of the mechanisms of axon transport.
轴突运输机制的体内分析。
- 批准号:
8125867 - 财政年份:2011
- 资助金额:
$ 9.07万 - 项目类别:
相似海外基金
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10340724 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Cargo Transport by Myosin Va and Kinesin-1 Molecular Motors: In Vitro Model Systems that Build Complexity in 3-Dimensions.
Myosin Va 和 Kinesin-1 分子马达的货物运输:构建 3 维复杂性的体外模型系统。
- 批准号:
10393000 - 财政年份:2021
- 资助金额:
$ 9.07万 - 项目类别:
Cargo Transport by Myosin Va and Kinesin-1 Molecular Motors: In Vitro Model Systems that Build Complexity in 3-Dimensions.
Myosin Va 和 Kinesin-1 分子马达的货物运输:构建 3 维复杂性的体外模型系统。
- 批准号:
10204620 - 财政年份:2021
- 资助金额:
$ 9.07万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8862557 - 财政年份:2014
- 资助金额:
$ 9.07万 - 项目类别: