Adaptation of a Novel RNA virus for vaccine use
新型RNA病毒用于疫苗用途的改造
基本信息
- 批准号:8415821
- 负责人:
- 金额:$ 7.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlphavirusAlphavirus InfectionsAntibodiesAntigensApoptosisAttenuatedAttenuated VaccinesCapsidCapsid ProteinsCell Culture TechniquesCell DeathCell LineCellsCharacteristicsClinicalCollectionCommunicable DiseasesCommunitiesComplexDNA VirusesDNA biosynthesisDataDendritic CellsDevelopmentDrug FormulationsExhibitsFunctional RNAFutureGenesGenetic TranscriptionGenomeGenomicsGoalsHourHousingHumanHuman VirusImmuneImmunologic SurveillanceIn VitroInsectaKineticsMalignant NeoplasmsMammalian CellMedicalMethodsModificationNatural ImmunityOutcomeParticulatePhasePhosphate BufferPlayProductionProteinsPublic HealthRNARNA VirusesRNA-Directed RNA PolymeraseReporterResearchResearch PriorityRiskRoleSafetyScientistSemliki forest virusSmall RNASurfaceSystemTemperatureTestingTransfectionTransgenesVaccine AntigenVaccinesViralViral GenomeVirionVirusWorkadaptive immunityattenuationbasecell typecostcost effectivedesignhuman diseaseimmune activationimmunogenicityimprovedinnovationmembernanoparticlenovelnovel vaccinesparticlepathogenpreventpromoterreconstitutionresponseself assemblytransgene expressionuptakevaccine deliveryvaccine developmentvaccine safetyvector vaccineviral RNAvirus characteristic
项目摘要
DESCRIPTION (provided by applicant): The overall objective of the research proposed is to create a new RNA virus vaccine using a novel self-assembling nanoparticle packaging method, designed to overcome safety, cost and other limitations that slow vaccine development. Virus-based vaccines have the ability to stimulate both innate and adaptive immunity, which can improve vaccine potency compared to other methods of vaccine delivery. RNA virus based vaccines have improved safety compared to DNA virus vaccines because they can't integrate into the host genome, but are still limited by cell-based capsid packaging methods that are costly and limit vaccine boosting. Our preliminary data show that by removing all native capsid assembly constraints self-assembling vaccines can be made with improved safety, vaccine stability, and at very low cost, simply by mixing RNA and coat protein together. The Specific Aims of this research plan are 1) to modify the insect Flock House Virus RNA genome with a non-native capsid origin of assembly and confirm in vitro particle formation, 2) to insert a foreig reporter transgene under the control of a virus promoter and evaluate the protein accumulation in cells, and 3) to combine the transgene expression and nanoparticle self-assembly, and to confirm that both are functional. The resulting product is a viral RNA vaccine with packaging characteristics independent of its native capsid, while retaining the virus characteristics that make it a good vaccine antigen. That includes nM particulate size for optimal antigen uptake by immune cells, stability at room temperature for years, and the ability to safely carry viral transgene expression into immune cells without the risk of virus reconstitution. Flock House Virus was selected for self-assembly because it also has many desirable characteristics. It is not a mammalian pathogen, and thus will exhibit improved safety. It has very high levels of antigen expression in mammalian cell types, and greatly reduced cell death compared to RNA viruses currently used in vaccine development. Flock House Virus has not been previously exploited for vaccine development because the native capsid packaging characteristics significantly limit transgene insert size and the virus particles still need to be made in cell culture. The expected outcome of this application will be to overcome native capsid packaging limitations, and create a self-assembling RNA nanoparticle based on the Flock House Virus genome, with high level antigen expression. Our research is significant, because it will fulfill our long-term objective to
create cost effective, safe and robust RNA vaccines, and it is innovative because we will validate that any RNA virus with desirable characteristics can be adapted for nanoparticle self- assembly, and increase the pace of RNA vaccine development for human use.
描述(由申请人提供):所提议研究的总体目标是使用新型自组装纳米颗粒包装方法创建一种新的RNA病毒疫苗,旨在克服安全性、成本和其他阻碍疫苗开发的限制。基于病毒的疫苗能够刺激先天免疫和适应性免疫,与其他疫苗递送方法相比,可以提高疫苗的效力。与 DNA 病毒疫苗相比,基于 RNA 病毒的疫苗提高了安全性,因为它们无法整合到宿主基因组中,但仍然受到基于细胞的衣壳包装方法的限制,这种方法成本高昂,并且限制了疫苗的加强。我们的初步数据表明,通过消除所有天然衣壳组装限制,只需将 RNA 和外壳蛋白混合在一起,就可以以非常低的成本制造出具有更高安全性和疫苗稳定性的自组装疫苗。该研究计划的具体目标是 1) 用非天然衣壳组装起源修改昆虫羊群病毒 RNA 基因组并确认体外颗粒形成,2) 在病毒启动子的控制下插入外来报告基因转基因并评估细胞中蛋白质的积累,3) 将转基因表达和纳米粒子自组装结合起来,并确认两者均具有功能。由此产生的产品是一种病毒 RNA 疫苗,其包装特性独立于其天然衣壳,同时保留了使其成为良好疫苗抗原的病毒特性。这包括实现免疫细胞最佳抗原摄取的 nM 颗粒大小、在室温下多年的稳定性以及将病毒转基因表达安全地携带到免疫细胞中而不存在病毒重建风险的能力。选择羊群病毒进行自组装是因为它还具有许多理想的特性。它不是哺乳动物病原体,因此将表现出更高的安全性。它在哺乳动物细胞类型中具有非常高水平的抗原表达,并且与目前用于疫苗开发的RNA病毒相比,大大减少了细胞死亡。羊群病毒之前尚未用于疫苗开发,因为天然衣壳包装特性显着限制了转基因插入物的大小,并且病毒颗粒仍然需要在细胞培养物中制备。该应用的预期结果将是克服天然衣壳包装限制,并创建基于羊群病毒基因组的自组装 RNA 纳米颗粒,具有高水平的抗原表达。我们的研究很重要,因为它将实现我们的长期目标
创造具有成本效益、安全和稳健的 RNA 疫苗,它是创新的,因为我们将验证任何具有所需特性的 RNA 病毒都可以适应纳米颗粒自组装,并加快人类使用的 RNA 疫苗的开发步伐。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoparticle encapsidation of Flock house virus by auto assembly of Tobacco mosaic virus coat protein.
- DOI:10.3390/ijms151018540
- 发表时间:2014-10-14
- 期刊:
- 影响因子:5.6
- 作者:Maharaj PD;Mallajosyula JK;Lee G;Thi P;Zhou Y;Kearney CM;McCormick AA
- 通讯作者:McCormick AA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Anne McCormick其他文献
Alison Anne McCormick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Anne McCormick', 18)}}的其他基金
Rapid Manufacturing of a Universal Flu Vaccine Using TMV-conjugated Centralized Antigens
使用 TMV 结合的集中抗原快速生产通用流感疫苗
- 批准号:
10633131 - 财政年份:2020
- 资助金额:
$ 7.24万 - 项目类别:
Rapid Manufacturing of a Universal Flu Vaccine Using TMV-conjugated Centralized Antigens
使用 TMV 结合的集中抗原快速生产通用流感疫苗
- 批准号:
10411922 - 财政年份:2020
- 资助金额:
$ 7.24万 - 项目类别:
Adaptation of a Novel RNA virus for vaccine use
新型RNA病毒用于疫苗用途的改造
- 批准号:
8279850 - 财政年份:2012
- 资助金额:
$ 7.24万 - 项目类别:
Improved idiotype immunotherapy for lymphoma by RNA vaccine delivery
通过 RNA 疫苗递送改进淋巴瘤的独特型免疫疗法
- 批准号:
7707096 - 财政年份:2009
- 资助金额:
$ 7.24万 - 项目类别:
Improved idiotype immunotherapy for lymphoma by RNA vaccine delivery
通过 RNA 疫苗递送改进淋巴瘤的独特型免疫疗法
- 批准号:
7843607 - 财政年份:2009
- 资助金额:
$ 7.24万 - 项目类别:
相似国自然基金
新发猪肠道甲型冠状病毒的细胞入侵及跨种传播的分子机制研究
- 批准号:31872488
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
- 批准号:
10667802 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
- 批准号:
10727819 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Employing viruses to unravel the functional significance of the m5C epitranscriptome
利用病毒揭示 m5C 表观转录组的功能意义
- 批准号:
10638533 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Elucidating the mechanisms of alphavirus subgenomic RNA translation
阐明甲病毒亚基因组 RNA 翻译机制
- 批准号:
10678281 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
SARS-CoV-2 vaccine durability during SIV infection
SIV 感染期间 SARS-CoV-2 疫苗的耐久性
- 批准号:
10618112 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别: