Effect of Prosthetic Foot-Ankle Stiffness on Amputee Function

假肢足踝刚度对截肢者功能的影响

基本信息

  • 批准号:
    8898732
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary Many lower limb amputees wear prosthetic feet that store and release energy through articulation of an elastic keel. The function of these energy storage and return (ESAR) feet are to provide mechanical energy for propulsion that was once provided by the muscles crossing the ankle joint. Clinicians are well aware that foot stiffness strongly influences the mechanics of amputee gait and prescribe ESAR feet with manufacturer-identified stiffness levels based on body weight and self-reported activity level. However, very little objective biomechanical data exists to guide the prescription of one stiffness level versus another and amputees continue to experience significant biomechanical and metabolic gait deficits relative to non-amputees and often develop secondary musculoskeletal disorders in both the intact and residual limbs due to abnormal limb loading. We believe many of these adverse results can be mitigated if the relationships between ESAR properties and the biomechanical and metabolic response of amputees are understood. However, to date no study has systematically varied prosthetic foot stiffness across a wide range of values to identify these relationships. Another contributing factor is that to date the majority of research evaluating the effectiveness of ESAR feet has been performed during straight line walking. However, non-sagittal plane activities such as turning are prevalent in daily living and create a different set of design requirements for ESAR feet that has yet to be evaluated. To address this important clinical problem, the overall goal of this research is to perform a systematic study of the influence of prosthetic foot-ankle stiffness on amputee gait performance during straight-line walking and turning to define this relationship and explore its use as a predictive prescription tool.. A unique element of the proposed work is the use of a rapid prototyping system to quickly fabricate patient- specific prosthetic feet with a wide range of stiffness properties. Specific Aim 1 will identify the effects of sagittal plane foot stiffness on amputee gait through a human subject experiment with unilateral transtibial amputees (n=20) wearing prosthetic feet with five different stiffness levels during straight-line walking. We will use rapid prototyping techniques to fabricate feet that match the stiffness properties in both the sagittal and coronal planes of each subject's own clinically prescribed prosthesis and four others (125% and 150% more or less stiff). The patient-specific properties of each foot will be precisely determined using a robotic gait simulator. Blinded to stiffness conditions, each subject will walk in a straight line on the prostheses to test specific hypotheses relating sagittal plane stiffness to expected changes in gait mechanics and metabolic cost. Specific Aim 2 will identify the effects of coronal plane foot stiffness on amputee gait using a similar experimental design and methods. Unilateral transtibial amputees (n=20) will wear prosthetic feet with five different coronal plane stiffness levels (as-prescribed and 125% and 150% more or less stiff) during straight-line walking and while walking along a curved path. Data from this second experiment will enable hypothesis testing relating coronal plane stiffness to expected changes in gait mechanics. We hypothesize that amputee mobility can be improved by optimizing the stiffness of their prosthetic feet in both the sagittal and coronal planes. This study will provide a thorough understanding of how prosthetic foot properties effect amputee gait and help us achieve our long-term goal of developing predictive prescription tools for the clinic that will result in greater amputee mobility, independence, and quality of life.
描述(由申请人提供): 项目总结许多下肢截肢者穿着假肢,通过表达弹性龙骨来存储和释放能量。这些能量存储和返回(ESAR)脚的功能是为推进的机械能提供曾经越过踝关节的肌肉提供的机械能。临床医生非常意识到,脚部刚度强烈影响截肢步态的机制,并根据体重和自我报告的活动水平开出具有制造商识别的刚度水平的Esar脚。但是,几乎没有客观的生物力学数据存在,可以指导一种刚度水平与另一种刚度的处方,而截肢者相对于非抑制剂,截肢者继续经历着重要的生物力学和代谢步态缺陷,并且经常由于异常limb limb载荷而产生次级肌肉骨骼疾病。我们认为,如果了解ESAR性质与截肢者的生物力学和代谢反应之间的关系,则可以减轻许多不良结果。但是,迄今为止,尚无研究在广泛的价值中系统上多样化的假肢脚部僵硬,以识别这些关系。另一个原因是,迄今为止,大多数研究评估了在直线步行期间进行了ESAR脚有效性的研究。但是,在日常生活中,诸如转弯之类的非固定平面活动很普遍,并为尚未评估的Esar脚创建了不同的设计要求。为了解决这一重要的临床问题,这项研究的总体目标是对假肢脚部僵硬对截肢步态性能的影响进行系统研究,在直线步行和转向定义这种关系并探索其用作预测处方工具的情况下。提议的工作的独特元素是快速使用特定型号的Protter topter-forter-Protter-forthertions-Protter-forter-fortherty protter-fortherty protter-fortherty protter-fortherty forte fortherty forte noft范围较高的范围。特定的目标1将通过人类主题实验,在直线行走期间,穿着单侧跨态截肢者(n = 20),通过单方面的tran脚式截肢者(n = 20)来鉴定矢状平面脚刚度对截肢步态的影响(n = 20)。我们将使用快速的原型制作技术来制造脚,以匹配每个受试者自己的临床处方假体和其他四个(125%和150%或更少的刚性)的矢状和冠状平面的刚度特性。每只脚的患者特异性特性将使用机器人步态模拟器精确确定。对僵硬条件蒙蔽,每个受试者都会在假体上直线行走,以测试特定的假设,这些假设将矢状平面刚度与步态力学和代谢成本的预期变化有关。特定的目标2将使用类似的实验设计和方法确定冠状平面脚刚度对截肢步态的影响。在直线行走和沿着弯曲的路径时,单侧式截止性截面(n = 20)将穿着五个不同的冠状平面刚度(AS PRESSCRECT)固定脚(ASURNAL平面刚度水平(AS PRESSCRICT)和125%和150%的刚度)和150%或多或少的刚性)。第二个实验的数据将使假设检验将冠状平面刚度与步态力学的预期变化有关。我们假设可以通过优化矢状和冠状平面中的假肢的刚度来提高截肢者的迁移率。这项研究将对假肢性能如何影响截肢步态有透彻的理解,并帮助我们实现为诊所开发预测性处方工具的长期目标,这将导致更大的截肢者的活动性,独立性和生活质量。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glenn Klute其他文献

Glenn Klute的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glenn Klute', 18)}}的其他基金

Improving prosthetic provision in rural communities: limb scanning with caregiver assistance
改善农村社区的假肢供应:在护理人员协助下进行肢体扫描
  • 批准号:
    10753426
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Lower limb prostheses for individuals who carry infants, toddlers, and other loads
适用于携带婴儿、幼儿和其他负载的人员的下肢假肢
  • 批准号:
    10329883
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Lower limb prostheses for individuals who carry infants, toddlers, and other loads
适用于携带婴儿、幼儿和其他负载的人员的下肢假肢
  • 批准号:
    10003046
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Pivot-Flex Foot
枢轴弯曲脚
  • 批准号:
    10424359
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10003857
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10350547
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Pivot-Flex Foot
枢轴弯曲脚
  • 批准号:
    9397453
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10664827
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Department of Veterans Affairs Rehabilitation Research & Development Center for Limb Loss and MoBility (CLiMB)
退伍军人事务部康复研究部
  • 批准号:
    10349233
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Torsional stiffness and user preference: lower limb amputee lab test
扭转刚度和用户偏好:下肢截肢者实验室测试
  • 批准号:
    9033047
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

相似海外基金

Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
  • 批准号:
    10746655
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Toxicity testing of fresh and photochemically aged burn pit smoke emissions
新鲜和光化学老化燃烧坑烟雾排放的毒性测试
  • 批准号:
    10319179
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Translational Study of Blast mTBI Effects on Locus Ceruleus-Cerebellar Network Structure and Function
母细胞 mTBI 对蓝斑-小脑网络结构和功能影响的转化研究
  • 批准号:
    10343746
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Identification of the Molecular Mechanisms Linking Alzheimer's Disease, PERK, and Mild Repetitive Head Injury
识别阿尔茨海默病、PERK 和轻度重复性头部损伤之间的关联分子机制
  • 批准号:
    9784437
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
BLR&D Research Career Scientist Award Application
BLR
  • 批准号:
    10454202
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了