THE ROLE OF ANATOMIC STRUCTURES IN VENTRICULAR FIBRILLATION
解剖结构在心室颤动中的作用
基本信息
- 批准号:8362803
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellAnatomic ModelsAnatomic structuresAnatomyAnisotropyArrhythmiaAutomobile DrivingBiological ModelsBiomedical ComputingCalciumCardiacCell modelCellsCicatrixCommunitiesComputer softwareComputing MethodologiesCoupledCouplingDatabasesDevelopmentElectrophysiology (science)EnvironmentFibrosisFundingGenerationsGrantHeartHeart failureHeterogeneityInfarctionMaintenanceModelingMyocardialNational Center for Research ResourcesNormal CellOryctolagus cuniculusPathologyPlayPrincipal InvestigatorPropertyRelative (related person)ResearchResearch InfrastructureResearch PersonnelResourcesRoleSourceStructureTestingThickTissuesUnited States National Institutes of HealthVentricularVentricular Fibrillationcostsudden cardiac deathtoolvirtual
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
(A) OBJECTIVES
In ventricular fibrillation (VF), the leading cause of sudden cardiac death, the wave of
electrical activation breaks up into a multi-wave chaotic state. Our research has focused on
the question: what are the causes of this wavebreak?
The traditional view was that the wave was broken up by anatomic heterogeneity, such as
the curved ventricular and septal walls with their varying thicknesses, and the systematically
varying anisotropy that is seen as one proceeds transmurally across the myocardial walls.
The objective of our earlier research was to answer the questions: how important are
anatomical heterogeneities as opposed to purely dynamical instabilities in generating and
sustaining fibrillation? How do they interact?
We have now shown that while the anatomic factors above can play contributory roles, the
decisive role is played by the dynamical stability of conduction, which is determined by the
electrophysiologic properties of the cells and tissue.
We now propose to extend this research to consider the anatomic and electrophysiologic
changes that are seen in heart failure. Our Specific Aims are to study arrhythmias in heart
failure, and especially to tease apart the contributions to arrhythmia generation made by
abnormal anatomy, on the one hand, and abnormal cell electrophysiology, on the other. To
study this, we will study the normal cell in the abnormal structural heart, the abnormal cell
in the normal heart and then the two pathologies, cell and tissue, together.
We will use the three-dimensional ventricular anatomic models and tools developed by the
NBCR investigators, and by us in conjunction with NBCR researchers, to study these
questions.
Specific Aim 1: To use the rabbit Virtual Heart to test the effects on cardiac wave conduction
produced by adding such pathological factors as fibrosis, infarct scars, and loss of cell-to-cell
electrical coupling.
Specific Aim 2: To use the NBCR modeling environment to study the effects of alterations in
intracellular calcium handling on the genesis and maintenance of VF. The UCSD cell systems
modeling environment, coupled to the geometry models, are the ideal platforms on which to
test our hypotheses that altered intracellular calcium handling is a key to the genesis of
fibrillation in heart failure.
Specific Aim 3: To develop anatomically realistic models of several forms of heart failure in
the rabbit, and use those models together with our cell models for normal and heart failure
rabbit, to test the relative contributions of altered tissue structure vs. altered cell
electrophysiology, in the genesis of arrhythmias in heart failure.
The proposed collaborative research will provide a driving application for the new
developments in software and computational methods in Specific Aims 1 of Core [4A.2B],
and the resulting new anatomic and electrophysiological meshes and models will be shared
with the community via the database to be developed in Specific Aim 2. It will serve as a
platform for testing and developing new bidomain models and coupled ODE solvers in
Specific Aim 2.
该子项目是利用资源的众多研究子项目之一
由 NIH/NCRR 资助的中心拨款提供。子项目的主要支持
并且子项目的主要研究者可能是由其他来源提供的,
包括其他 NIH 来源。 子项目可能列出的总成本
代表子项目使用的中心基础设施的估计数量,
NCRR 赠款不直接向子项目或子项目工作人员提供资金。
(一) 目标
在心室颤动(VF)(心源性猝死的主要原因)中,
电激活分解成多波混沌状态。我们的研究重点是
问题:这次浪潮的原因是什么?
传统观点认为,波被解剖异质性所打破,例如
弯曲的心室壁和间隔壁具有不同的厚度,以及系统地
当一个人跨壁穿过心肌壁时,可以看到不同的各向异性。
我们早期研究的目的是回答以下问题:
解剖学的异质性,而不是纯粹的动态不稳定性产生和
持续性颤动? 他们如何互动?
我们现在已经证明,虽然上述解剖因素可以发挥贡献作用,
传导的动态稳定性起着决定性的作用,这是由
细胞和组织的电生理特性。
我们现在建议扩展这项研究以考虑解剖学和电生理学
心力衰竭中可见的变化。 我们的具体目标是研究心律失常
失败,尤其是未能梳理出对心律失常产生的贡献
一方面是解剖结构异常,另一方面是细胞电生理学异常。到
研究这个,我们将研究结构异常的心脏中的正常细胞,异常的细胞
在正常心脏中,然后将细胞和组织这两种病理状态结合在一起。
我们将使用三维心室解剖模型和工具开发
NBCR 研究人员以及我们与 NBCR 研究人员一起研究这些
问题。
具体目标1:利用兔子虚拟心脏测试对心波传导的影响
添加纤维化、梗塞疤痕、细胞间缺失等病理因素而产生
电耦合。
具体目标 2:使用 NBCR 建模环境来研究变化的影响
细胞内钙处理对 VF 发生和维持的影响。加州大学圣地亚哥分校细胞系统
与几何模型相结合的建模环境是理想的平台
检验我们的假设,即改变细胞内钙处理是发生的关键
心力衰竭中的颤动。
具体目标 3:开发几种心力衰竭的解剖学真实模型
兔子,并将这些模型与我们的细胞模型一起用于正常和心力衰竭
兔子,测试改变的组织结构与改变的细胞的相对贡献
电生理学,心力衰竭心律失常的起源。
拟议的合作研究将为新的技术提供驱动应用
核心 [4A.2B] 的特定目标 1 中软件和计算方法的发展,
由此产生的新的解剖学和电生理学网格和模型将被共享
通过将在具体目标 2 中开发的数据库与社区进行交流。它将作为
用于测试和开发新双域模型和耦合 ODE 求解器的平台
具体目标2。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew D. McCulloch其他文献
Oesophageal morphometry and residual strain in a mouse model of osteogenesis imperfecta
成骨不全小鼠模型中的食管形态测量和残余应变
- DOI:
10.1046/j.1365-2982.2001.00279.x - 发表时间:
2001-10-01 - 期刊:
- 影响因子:3.5
- 作者:
Hans Gregersen;Sara M. Weis;Andrew D. McCulloch - 通讯作者:
Andrew D. McCulloch
Complex distributions of residual stress and strain in the mouse left ventricle: experimental and theoretical models
小鼠左心室残余应力和应变的复杂分布:实验和理论模型
- DOI:
10.1007/s10237-002-0021-0 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:3.5
- 作者:
J. Omens;Andrew D. McCulloch;J. Criscione - 通讯作者:
J. Criscione
Computational biology of the heart: from structure to function.
心脏的计算生物学:从结构到功能。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Andrew D. McCulloch;James B. Bassingthwaighte;Peter J Hunter;Denis Noble - 通讯作者:
Denis Noble
Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns.
成人心脏成纤维细胞对体外双轴应变模式的差异反应。
- DOI:
10.1006/jmcc.1999.1017 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:5
- 作者:
Ann A. Lee;T. Delhaas;Andrew D. McCulloch;F. Villarreal - 通讯作者:
F. Villarreal
A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII
一种新的小鼠肌细胞电生理学计算模型,用于评估 Na 负载和 CaMKII 之间的协同作用
- DOI:
10.1113/jphysiol.2013.266676 - 发表时间:
2014-03-15 - 期刊:
- 影响因子:0
- 作者:
S. Morotti;A. Edwards;Andrew D. McCulloch;D. Bers;E. Grandi - 通讯作者:
E. Grandi
Andrew D. McCulloch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew D. McCulloch', 18)}}的其他基金
Systems Biology of Hypertrophic Heart Disease from Molecular Pathways to Organ System
肥厚性心脏病从分子途径到器官系统的系统生物学
- 批准号:
9302154 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Modeling Cytosolic and Nuclear Ca2+ and IP3 Signaling in Ventricular Myocytes
心室肌细胞胞浆和核 Ca2 和 IP3 信号传导建模
- 批准号:
8444915 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
MULTISCALE MODELING ENVIRONMENT FOR TISSUE AND ORGAN BIOPHYSICS
组织和器官生物物理学的多尺度建模环境
- 批准号:
8362788 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
ATRIAL FIBRILLATION AND ALTERNANS OF ACTION POTENTIAL DURATION
心房颤动和动作电位持续时间的交替
- 批准号:
8362804 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
SIMULATION OF CORONARY ARTERY BYPASS GRAFT AND SURGICAL VENTRICULAR RESTORATION
冠状动脉搭桥术和心室修复手术的模拟
- 批准号:
8362806 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
相似国自然基金
基于多解剖结构可形变建模和代理模型的电磁辐射随机剂量学研究
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
基于面部解剖结构动力学模型与多模态时空数据耦合的人脸仿真
- 批准号:61402164
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
三维医学解剖学结构提取的变分模型和快速算法研究
- 批准号:11301447
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
叶片光合作用的三维数学建模
- 批准号:30970213
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
农村自杀危险因素的因果结构
- 批准号:30670711
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Two-pronged therapeutic approach for glioblastoma: high dose radiation therapy then repair of radiation-induced brain injury
胶质母细胞瘤的双管齐下治疗方法:高剂量放射治疗然后修复放射引起的脑损伤
- 批准号:
9751998 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Integration of High Field MRI and EPRI For Functional Imaging
高场 MRI 和 EPRI 的集成用于功能成像
- 批准号:
8584905 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
CRCNS: Cytoskeletal Mechanisms of Dendrite Arbor Shape Development
CRCNS:树突乔木形状发育的细胞骨架机制
- 批准号:
9310382 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Integration of High Field MRI and EPRI For Functional Imaging
高场 MRI 和 EPRI 的集成用于功能成像
- 批准号:
8698417 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别: