Segmentation and volumetric quantification of thalamic nuclei for assessing MS
用于评估 MS 的丘脑核分割和体积定量
基本信息
- 批准号:8656167
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnteriorAtrophicBasal GangliaBehavioralBiological MarkersBipolar DisorderBrainCategoriesCessation of lifeChronicClinicClinicalCognitiveCognitive deficitsCommunitiesComputer softwareCuesDataData SetData SourcesDatabasesDevelopmentDiagnosisDiffusionDiffusion Magnetic Resonance ImagingDiseaseEpilepsyEquilibriumFiberFunctional disorderGrantHistologyImageImpaired cognitionIndividualInvestigationJointsLabelLanguageLearningLesionMachine LearningMagnetic ResonanceMagnetic Resonance ImagingManualsMapsMeasurementMeasuresMethodsModelingMoodsMotorMovementMultiple SclerosisNeurosciencesNoiseNuclearParkinson DiseaseParticipantPathologyPatientsPatternPerformancePilot ProjectsPlayPopulationPrimary Progressive Multiple SclerosisPrincipal Component AnalysisProcessPropertyRelapseResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionRoleRunningScanningSensorySignal TransductionSoftware ToolsSolventsSource CodeSurfaceSymptomsTechniquesTestingThalamic DiseasesThalamic structureTremorVisual AcuityWeightWhite Matter DiseaseWorkWritingbasecohortdesigndisabilitydisorder subtypeexperiencefallsgray matterillness lengthimprovedinnovationneuroimagingnovelopen sourceprogramspublic health relevancesoftware developmentsuccessweb sitewhite matter
项目摘要
DESCRIPTION (provided by applicant): The thalamus plays a key role in integrating sensory information for further processing in the basal ganglia and cortex. In multiple sclerosis (MS), long thought to be primarily a white matter disease, it has recently been shown that cognitive decline is more strongly related to thalamic volume than to white matter magnetic resonance image (MRI) lesion load. Since the thalamus is made up of nuclei having specific physical connections within the brain, it may be possible to relate physical changes in thalamic nuclei caused by MS to specific cognitive, behavioral, or disease subtype differences. This grant proposes to develop an automated method and associated software tool to carry out thalamic nuclei parcellation using MRI. Specifically, it is proposed to: 1) optimize the computation of thalamic features from anatomical and diffusion MRI; 2) develop an integrated, multi-nuclear thalamus segmentation algorithm; 3) optimize the algorithm parameters using manual delineations; and 4) carry out a pilot study using an existing MRI database comprising 99 normal controls and 226 MS patients. The work builds on previous methods that exploit topology and connectivity in order to improve segmentation robustness. The primary innovation is to provide a coordinated multi-object approach that integrates intensity information from T1-weighted MRI with orientation information and connectivity information obtained from diffusion MRI. Primary diffusion directions will be mapped to a five- dimensional space in order to cluster nuclei by diffusion orientation and use this information in the parcellation algorithm. A machine learning approach applied to manual delineations will be used to learn boundary-specific properties that will be used to carry out a joint parcellation approach. The algorithm will be designed for conventional three tesla clinical MRI and will be validated using high-resolution, high signal-to-noise ratio seven tesla MRI on 15 subjects scanned contemporaneously with their three tesla scans. The pilot study will use 822 scans of 305 participants, and will examine longitudinal stability of the algorithm and a cross-sectional univariate statistical analysis relatng thalamic nuclei (or nuclear groups) volumes to various clinical measures including disease subtype, disease duration, visual acuity, and two standard MS composite disability scores. An exploratory principal component analysis of multiple thalamic nuclear volumes will be carried out to look for patterns of atrophy and their relationships to various clinical measures. The algorithm
will be made publicly available as open source code on the NITRC website so that the entire neuroscience community will be able to use the algorithm to study other diseases or modify and extend it for other applications.
描述(由申请人提供):丘脑在整合感官信息方面起着关键作用,以在基底神经节和皮层中进行进一步处理。在多发性硬化症(MS)中,长期认为主要是一种白质疾病,最近已经证明,认知能力下降与丘脑量更大,而不是与白质磁共振图像(MRI)病变负荷相比。由于丘脑是由大脑内具有特定物理联系的核组成的,因此有可能将由MS引起的丘脑核的物理变化与特定的认知,行为或疾病亚型差异联系起来。该赠款建议开发一种自动化方法和相关的软件工具,以使用MRI进行丘脑核。具体而言,提出的是:1)优化从解剖学和扩散MRI的丘脑特征的计算; 2)开发一种综合的多核丘脑分割算法; 3)使用手动描述优化算法参数; 4)使用现有的MRI数据库进行试点研究,该数据库包括99个正常对照和226毫秒患者。这项工作是基于利用拓扑和连接性以提高细分鲁棒性的先前方法的基础。主要的创新是提供一种协调的多对象方法,该方法将来自T1加权MRI的强度信息与从扩散MRI获得的方向信息和连接信息相结合。主要扩散方向将映射到五维空间,以通过扩散取向聚集核,并在分析算法中使用此信息。应用于手动描述的机器学习方法将用于学习针对边界特定的属性,该特性将用于执行联合分割方法。该算法将针对传统的三个特斯拉临床MRI设计,并将使用高分辨率,高信噪比验证,七个特斯拉MRI对15名受试者进行了三种特斯拉扫描,同时扫描。试点研究将使用822次扫描305名参与者,并将检查算法的纵向稳定性和横截面单变量统计分析与丘脑核核(或核基团)相关的各种临床措施,包括疾病亚型,包括疾病亚型,疾病,疾病持续时间,视觉浓度,视力,两种标准的MS综合能力。将对多个丘脑核体积进行探索性主成分分析,以寻找萎缩模式及其与各种临床指标的关系。算法
将在NITRC网站上公开作为开源代码公开使用,以便整个神经科学社区将能够使用算法来研究其他疾病或修改并将其扩展到其他应用程序。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thalamus parcellation using multi-modal feature classification and thalamic nuclei priors.
使用多模态特征分类和丘脑核先验进行丘脑分割。
- DOI:10.1117/12.2216987
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Glaister,Jeffrey;Carass,Aaron;Stough,JoshuaV;Calabresi,PeterA;Prince,JerryL
- 通讯作者:Prince,JerryL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry L Prince其他文献
Multiple Sclerosis brain lesion segmentation with different architecture ensembles
使用不同架构集成的多发性硬化症脑病变分割
- DOI:
10.1117/12.2623302 - 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Pouria Tohidi;Samuel W. Remedios;Danielle Greenman;Muhan Shao;Shuo Han;B. Dewey;Jacob C. Reinhold;Y. Chou;D. Pham;Jerry L Prince;A. Carass - 通讯作者:
A. Carass
HARP TRACKING REFINEMENT USING SEEDED REGION GROWING
使用种子区域生长的 HARP 跟踪细化
- DOI:
10.1109/isbi.2007.356866 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Liu;E. Murano;M. Stone;Jerry L Prince - 通讯作者:
Jerry L Prince
Tracking tongue motion in three dimensions using tagged MR image
使用标记的 MR 图像跟踪三维舌头运动
- DOI:
10.1109/isbi.2006.1625182 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Liu;M. Stone;Jerry L Prince - 通讯作者:
Jerry L Prince
Partial volume estimation and the fuzzy C-means algorithm [brain MRI application]
部分体积估计和模糊C均值算法[脑MRI应用]
- DOI:
10.1109/icip.1998.999071 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
D. Pham;Jerry L Prince - 通讯作者:
Jerry L Prince
Spatiotemporal Visualization of the Tongue Surface using Ultrasound and Kriging (SURFACES)
使用超声波和克里金法对舌头表面进行时空可视化 (SURFACES)
- DOI:
10.1080/02699200500113632 - 发表时间:
2005 - 期刊:
- 影响因子:1.2
- 作者:
V. Parthasarathy;M. Stone;Jerry L Prince - 通讯作者:
Jerry L Prince
Jerry L Prince的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry L Prince', 18)}}的其他基金
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10580693 - 财政年份:2021
- 资助金额:
$ 22.83万 - 项目类别:
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10357873 - 财政年份:2021
- 资助金额:
$ 22.83万 - 项目类别:
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
8943325 - 财政年份:2015
- 资助金额:
$ 22.83万 - 项目类别:
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9319686 - 财政年份:2015
- 资助金额:
$ 22.83万 - 项目类别:
Tongue muscle function after cancer surgery using 4D MRI, DTI, and MR tagging
使用 4D MRI、DTI 和 MR 标记评估癌症手术后的舌肌功能
- 批准号:
9121528 - 财政年份:2015
- 资助金额:
$ 22.83万 - 项目类别:
3D segmentation and registration of macular SD-OCT for application in MS
黄斑 SD-OCT 的 3D 分割和配准在 MS 中的应用
- 批准号:
9301542 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
3D segmentation and registration of macular SD-OCT for application in MS
黄斑 SD-OCT 的 3D 分割和配准在 MS 中的应用
- 批准号:
8889262 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
3D segmentation and registration of macular SD-OCT for application in MS
黄斑 SD-OCT 的 3D 分割和配准在 MS 中的应用
- 批准号:
8765283 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
Multimodal image registration by proxy image synthesis
通过代理图像合成进行多模态图像配准
- 批准号:
8919113 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
Multimodal image registration by proxy image synthesis
通过代理图像合成进行多模态图像配准
- 批准号:
8614480 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别: