Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer

图像驱动的多尺度建模来预测乳腺癌的治疗反应

基本信息

  • 批准号:
    8664820
  • 负责人:
  • 金额:
    $ 55.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The ability to identify-early in the course of therapy-patients that are not responding to a particular neoadjuvant regimen would provide the opportunity to switch to a potentially more efficacious treatment and transform current practice. Unfortunately, existing methods of determining early response are inadequate. The vision for this program is to develop tumor-forecasting methods for predicting response in individual breast cancer patients after a single cycle of neoadjuvant therapy. We propose to combine time-resolved drug- response cell scale data with physiological and tissue scale imaging data in order to initialize and constrain a multi-scale angiogenesis-cell proliferation model designed to predict both size and spatial characteristics of breast tumors at the completion of therapy. To achieve this goal, we will pursue the following specific aims: 1. (Pre-clinical validation) In the BT-474 HER2+ human breast cancer cell line, we will obtain: 1a. (cell scale) in vitro data quantifying rates of entry of proliferating cells into quiescence and apoptosis; 1b. (physiologica scale) in vivo MRI and PET measurements of cellularity, vascularity, and metabolism; 1c. (tissue scale) in vivo MR elastography measurements to quantify the tumor mechanical properties; 1d. (all scales) in situ data from fixed tumor tissue to corroborate cell and imaging-based metrics. These data will be integrated into the multi-scale model to predict tumor response after one cycle of the targeted anti-HER2 agents trastuzumab and lapatinib. 2. (Clinical application) In HER2+ patients receiving neoadjuvant trastuzumab and lapatinib, we will obtain: 2a. (physiological scale) in vivo MRI and PET measurements of cellularity, vascularity, and metabolism; 2b. (tissue scale) in vivo MR elastography measurements to quantify tumor mechanical properties. Guided by the results from Aim 1, these data will be integrated into the multi-scale model and make predictions on breast tumor response outcomes after a single cycle of trastuzumab and/or lapatinib. If successful, our approach would be the foundation for high-impact, large-scale application in clinical settings.
描述(由申请人提供):在对特定的新辅助方案没有反应的治疗患者过程中,能够识别的能力将提供机会转向潜在的更有效的治疗方法并改变当前的实践。不幸的是,确定早期响应的现有方法不足。该程序的愿景是开发单个新辅助治疗周期后,用于预测个别乳腺癌患者的反应的肿瘤造成的方法。我们建议将时间分辨的药物反应细胞尺度数据与生理和组织量表成像数据相结合,以便初始化和约束多尺度的血管生成细胞增殖模型,旨在预测治疗完成时乳腺肿瘤的大小和空间特征。为了实现这一目标,我们将追求以下特定目标:1。(临床前验证) BT-474 HER2+人类乳腺癌细胞系,我们将获得:1a。 (细胞尺度)体外数据量化增殖细胞进入静止和凋亡的速率; 1B。 (生理量表)体内MRI和细胞性,血管和代谢的PET测量; 1C。 (组织尺度)体内MR弹性学测量值,以量化肿瘤机械性能; 1d (所有尺度)原位数据从固定肿瘤组织到证实细胞和基于成像的指标。这些数据将集成到多尺度模型中,以预测靶向抗HER2剂曲妥珠单抗和拉帕替尼的一个循环后的肿瘤反应。 2。(临床应用)在接受新辅助曲妥珠单抗和拉帕替尼的HER2+患者中,我们将获得:2a。 (生理规模)体内MRI和细胞性,血管性和代谢的PET测量; 2b。 (组织尺度)体内MR弹性学测量值,以量化肿瘤机械性能。 在AIM 1的结果的指导下,这些数据将集成到多尺度模型中,并在单个曲妥珠单抗和/或Lapatinib周期后对乳腺肿瘤反应结果进行预测。如果成功的话,我们的方法将是在临床环境中进行大型大规模应用的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vito Quaranta其他文献

Vito Quaranta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vito Quaranta', 18)}}的其他基金

Phenotype Heterogeneity and Dynamics in SCLC
SCLC 的表型异质性和动态
  • 批准号:
    9901484
  • 财政年份:
    2018
  • 资助金额:
    $ 55.72万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10375419
  • 财政年份:
    2018
  • 资助金额:
    $ 55.72万
  • 项目类别:
Phenotype Heterogeneity and Dynamics in SCLC
SCLC 的表型异质性和动态
  • 批准号:
    10375418
  • 财政年份:
    2018
  • 资助金额:
    $ 55.72万
  • 项目类别:
Modeling the SCLC Phenotypic Space
SCLC 表型空间建模
  • 批准号:
    10375422
  • 财政年份:
    2018
  • 资助金额:
    $ 55.72万
  • 项目类别:
Quantitative Multiscale Imaging to Optimize Cancer Treatment Strategies
定量多尺度成像优化癌症治疗策略
  • 批准号:
    8703365
  • 财政年份:
    2014
  • 资助金额:
    $ 55.72万
  • 项目类别:
Quantitative Multiscale Imaging to Optimize Cancer Treatment Strategies
定量多尺度成像优化癌症治疗策略
  • 批准号:
    9131999
  • 财政年份:
    2014
  • 资助金额:
    $ 55.72万
  • 项目类别:
Inhibition of proliferation by Laminin
层粘连蛋白抑制增殖
  • 批准号:
    8691542
  • 财政年份:
    2014
  • 资助金额:
    $ 55.72万
  • 项目类别:
Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer
图像驱动的多尺度建模来预测乳腺癌的治疗反应
  • 批准号:
    8920097
  • 财政年份:
    2013
  • 资助金额:
    $ 55.72万
  • 项目类别:
Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer
图像驱动的多尺度建模来预测乳腺癌的治疗反应
  • 批准号:
    8476896
  • 财政年份:
    2013
  • 资助金额:
    $ 55.72万
  • 项目类别:
Administration
行政
  • 批准号:
    8181597
  • 财政年份:
    2010
  • 资助金额:
    $ 55.72万
  • 项目类别:

相似国自然基金

靶向SIRT3小分子激动剂调控三阴性乳腺癌细胞自噬和免疫微环境的机制研究
  • 批准号:
    82373193
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
EZH2巴豆酰化修饰抑制乳腺癌细胞转移的作用和机制研究
  • 批准号:
    82372992
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于脂肪细胞对乳腺癌细胞的代谢重编程作用探讨3-羟基丁酰化修饰调控三阴性乳腺癌化疗敏感性的机制
  • 批准号:
    82303592
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FAD合成酶通过调控线粒体氧化磷酸化影响三阴性乳腺癌细胞衰老的作用及机制研究
  • 批准号:
    82303048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
毛枝卷柏Robustaflavone A调控糖酵解介导乳腺癌细胞铁死亡机制研究
  • 批准号:
    82304794
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New approach based on enzyme stimulating of peptides for targeting drug resistance breast cancers
基于肽酶刺激的新方法用于靶向耐药性乳腺癌
  • 批准号:
    10713648
  • 财政年份:
    2023
  • 资助金额:
    $ 55.72万
  • 项目类别:
Mechanisms of mutant p53 reactivation
突变体 p53 重新激活的机制
  • 批准号:
    10719196
  • 财政年份:
    2023
  • 资助金额:
    $ 55.72万
  • 项目类别:
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
  • 批准号:
    10719415
  • 财政年份:
    2023
  • 资助金额:
    $ 55.72万
  • 项目类别:
Crosslinking-based targeted therapy for triple-negative breast cancer
基于交联的三阴性乳腺癌靶向治疗
  • 批准号:
    10650998
  • 财政年份:
    2023
  • 资助金额:
    $ 55.72万
  • 项目类别:
Molecularly Targeted Probes for Photodynamic Therapy and Imaging of Breast Cancer
用于乳腺癌光动力治疗和成像的分子靶向探针
  • 批准号:
    10738388
  • 财政年份:
    2023
  • 资助金额:
    $ 55.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了