Cell-Matrix Interactions and Migration

细胞-基质相互作用和迁移

基本信息

项目摘要

Integrins, extracellular matrix molecules, and cytoskeletal proteins contribute to cell migration and signaling by complex, integrated mechanisms. We are addressing the following specific questions: 1. What subcellular structures and signaling pathways are important for rapid cell migration? 2. How are the functions of integrins, the extracellular matrix, and the cytoskeleton integrated, and how is the regulatory crosstalk between them coordinated to produce normal cell migration? We are using a variety of cell and molecular biology approaches to address these questions, including biochemical analyses, fluorescent chimeras, and live-cell phase-contrast or confocal time-lapse microscopy. We have generated a variety of fluorescent molecular chimeras and mutants of cytoskeletal proteins as part of a long-term program to analyze their functions in integrin-mediated processes. We have been focusing particularly on the functions of integrins and associated extracellular and intracellular molecules in the mechanisms and spatial regulation of cell migration. We previously established that the topography of the extracellular matrix (ECM) plays a vital role in regulating cytoskeletal organization, cell morphology, and cell migration by demonstrating that one-dimensional (1D) micropatterned lines mimic the functions of the fibrillar ECM structures found in three-dimensional cell-derived matrix. We extended these studies to establish the mechanism by which fibrillar topography evokes rapid, efficient cell migration in fibroblasts and how this mode of migration differs from migration studied previously using regular two-dimensional (2D) tissue culture substrates. We found that two key processes of mesenchymal cell migration, protrusion of the leading edge and adhesions formed within the lamella, are enhanced during 1D migration and are controlled indirectly by cellular contractility. These studies also established that 1D adhesions and 3D adhesions to cell-derived matrix fibrils are more stably associated with the matrix, consistent with prolonged cell adhesiveness. We are continuing to explore the role of ECM topography and physical properties such as stiffness in regulating fibroblast adhesion, migration, and mechanotransduction. These ongoing studies are comparing fibroblast responses to 3D collagen hydrogels of differing architecture in order to characterize the dynamics of cell adhesions to collagen fibrils of differing thickness and compliance, as well as determining the mode of cell migration in different types of collagen matrix that correspond to different types of extracellular matrix in vivo. We are also evaluating the regulatory and functional crosstalk between actomyosin contractility and microtubule post-translational modification in cell adhesion, migration, matrix assembly, and organ branching in development. Our studies are identifying a homeostatic balance between actomyosin-mediated contraction and the level of microtubule acetylation. This balance affects fibronectin matrix assembly, cell migration, and the effectiveness of embryonic organ branching. This combined knowledge should provide novel approaches to understanding, preventing, or ameliorating migratory processes that cells use in abnormal development and cancer. An in-depth understanding of the precise manner in which cells move and interact with their matrix environment will also facilitate tissue engineering studies.
整联蛋白,细胞外基质分子和细胞骨架蛋白有助于通过复杂的,综合机制的细胞迁移和信号传导。我们正在解决以下具体问题: 1。哪些亚细胞结构和信号通路对于快速细胞迁移很重要? 2。整联蛋白,细胞外基质和细胞骨架的功能如何整合,它们之间的调节串扰如何协调产生正常的细胞迁移? 我们正在使用各种细胞和分子生物学方法来解决这些问题,包括生化分析,荧光嵌合体以及活细胞相位对比度或共聚焦延时显微镜。我们已经生成了各种荧光分子嵌合体和细胞骨架蛋白的突变体,这是一项长期程序的一部分,以分析其在整联蛋白介导的过程中的功能。我们一直在关注整联蛋白以及相关的细胞外和细胞内分子在细胞迁移的机理和空间调节中的功能。 我们先前已经确定,细胞外基质(ECM)的地形在调节细胞骨架组织,细胞形态和细胞迁移中起着至关重要的作用,通过证明模拟于三维细胞中的纤维纤维ECM结构的功能,在三维细胞中发现的三维ECM结构的功能。我们扩展了这些研究,以建立原纤维地形在成纤维细胞中唤起快速,有效的细胞迁移的机制,以及这种迁移方式与先前使用常规二维(2D)组织培养底物所研究的迁移方式有所不同。我们发现,间充质细胞迁移的两个关键过程,前缘的突出和在羊角内部形成的粘附,在1D迁移过程中得到了增强,并通过细胞收缩力间接控制。这些研究还确定,对细胞衍生的基质原纤维的1D粘附和3D粘连与基质更稳定,与长时间的细胞粘附性一致。 我们将继续探索ECM地形和物理特性的作用,例如刚度在调节成纤维细胞粘附,迁移和机械转移中的作用。这些正在进行的研究是在比较不同结构的3D胶原水凝胶的成纤维细胞反应,以表征细胞粘附的动力学对不同厚度和依从性的胶原蛋白原纤维的动力学,并确定与不同类型的胶原蛋白基质中的细胞迁移模式,这些模式与不同类型的胶质细胞外基质相对应。 我们还评估了在细胞粘附,迁移,基质组件和发育中的器官分支中,肌动蛋白收缩力与微管后修饰之间的调节和功能性串扰。我们的研究正在确定肌球蛋白介导的收缩水平与微管乙酰化水平之间的体内平衡。这种平衡会影响纤连蛋白基质组件,细胞迁移以及胚胎器官分支的有效性。 这种合并的知识应提供新颖的方法来理解,预防或改善细胞在异常发育和癌症中使用的迁移过程。对细胞移动和与基质环境相互作用的确切方式的深入了解也将促进组织工程研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Yamada其他文献

Kenneth Yamada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Yamada', 18)}}的其他基金

INTEGRIN ASSOCIATED PROTEINS
整合素相关蛋白
  • 批准号:
    8365830
  • 财政年份:
    2011
  • 资助金额:
    $ 51.1万
  • 项目类别:
INTEGRIN ASSOCIATED PROTEINS
整合素相关蛋白
  • 批准号:
    8171294
  • 财政年份:
    2010
  • 资助金额:
    $ 51.1万
  • 项目类别:
INTEGRIN ASSOCIATED PROTEINS
整合素相关蛋白
  • 批准号:
    7957753
  • 财政年份:
    2009
  • 资助金额:
    $ 51.1万
  • 项目类别:
Matrix Organization and Dimensionality
矩阵组织和维度
  • 批准号:
    10703883
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Matrix Organization and Dimensionality
矩阵组织和维度
  • 批准号:
    7733931
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Cell-Surface Interactions in Pathogenesis
发病机制中的细胞表面相互作用
  • 批准号:
    10246740
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Craniofacial Developmental Dynamics
颅面发育动力学
  • 批准号:
    10917907
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Craniofacial Developmental Dynamics
颅面发育动力学
  • 批准号:
    8148623
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Cell-Matrix Interactions and Migration
细胞-基质相互作用和迁移
  • 批准号:
    8148622
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:
Craniofacial Developmental Dynamics
颅面发育动力学
  • 批准号:
    9339225
  • 财政年份:
  • 资助金额:
    $ 51.1万
  • 项目类别:

相似海外基金

Role of cellular memory in glaucoma.
细胞记忆在青光眼中的作用。
  • 批准号:
    10501318
  • 财政年份:
    2022
  • 资助金额:
    $ 51.1万
  • 项目类别:
Role of cellular memory in glaucoma.
细胞记忆在青光眼中的作用。
  • 批准号:
    10707119
  • 财政年份:
    2022
  • 资助金额:
    $ 51.1万
  • 项目类别:
Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
  • 批准号:
    10291447
  • 财政年份:
    2021
  • 资助金额:
    $ 51.1万
  • 项目类别:
PATHOGENESIS AND IN VIVO SUPPRESSION OF THIN FILAMENT-BASED CARDIOMYOPATHIES
细丝型心肌病的发病机制和体内抑制
  • 批准号:
    10366554
  • 财政年份:
    2015
  • 资助金额:
    $ 51.1万
  • 项目类别:
PATHOGENESIS AND IN VIVO SUPPRESSION OF THIN FILAMENT-BASED CARDIOMYOPATHIES
细丝型心肌病的发病机制和体内抑制
  • 批准号:
    10544001
  • 财政年份:
    2015
  • 资助金额:
    $ 51.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了