Control of Microtubule and Genome Integrity by the OBSL1-CUL7-CUL9-p53 Pathway

通过 OBSL1-CUL7-CUL9-p53 途径控制微管和基因组完整性

基本信息

  • 批准号:
    8585824
  • 负责人:
  • 金额:
    $ 32.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-17 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): During mitosis, chromosomes are accurately segregated to daughter cells by a microtubule-based structure called the mitotic spindle. It has long been recognized that undetected microtubule damage causes mitotic defects and genetic instability which renders cells susceptible to tumorigenesis. A well-established pathway, the spindle assembly checkpoint pathway, ensures equal separation of sister chromatids and is conserved in all eukaryotes. We recently uncovered evidence for a new pathway, unique to vertebrates, which can also sense microtubule stress. Combined genetic, cellular and biochemical analyses have led to the finding that CUL7 and CUL9, two cytoplasmically localized E3 ubiquitin ligases which can bind to p53, control mitosis and cytokinesis by sensing microtubule stress. Deletion of Cul9 in mice resulted in wide spread polyploidy, spontaneous tumor development, and rendered mice susceptible to carcinogenesis indicating that Cul9 is a tumor suppressor. Conversely, gain of function in CUL9 promoted a p53-dependent apoptosis. We further found that depletion of CUL7 or its binding partner OBSL1 caused severe microtubule damage, abnormal chromatid alignment, and defects in cytokinesis and widespread mitotic cell death, all of which can be rescued by simultaneous depletion of CUL9. These extensive preliminary results led us to propose that there exists in vertebrates an OBSL1-CUL7-CUL9-p53 pathway that senses microtubule stress during mitosis and is functionally separate from the well-established spindle-assembly checkpoint. We propose here a series of rigorous genetic and biochemical experiments to examine the role of this novel OBSL1-CUL7-CUL9-p53 pathway in maintaining genome integrity. In the first Aim, we will generate Cul7-Cul9 and Obsl1-Cul9 double knockout mice to genetically test the functional relationship of CUL7 and CUL9 and between OBSL1 and CUL9 in vivo. In the second Aim, we will genetically test the contribution of p53 to pathway by generating two separate knock-in mice, each with a point mutation in the p53 binding domain of CUL7 and CUL9. Finally, we will biochemically test how ubiquitylation contributes to the mechanism of the OBSL1-CUL7-CUL9-p53 pathway.
描述(由申请人提供):在有丝分裂期间,染色体通过称为有丝分裂纺锤体的微管结构准确地分离到子细胞。人们早就认识到,未被检测到的微管损伤会导致有丝分裂缺陷和遗传不稳定,从而使细胞容易发生肿瘤。纺锤体组装检查点途径是一条完善的途径,可确保姐妹染色单体的平等分离,并且在所有真核生物中都是保守的。我们最近发现了脊椎动物特有的新途径的证据,该途径也可以感知微管压力。结合遗传、细胞和生化分析,我们发现 CUL7 和 CUL9 这两种细胞质定位的 E3 泛素连接酶可以与 p53 结合,通过感知微管应激来控制有丝分裂和胞质分裂。小鼠中 Cul9 的缺失导致广泛传播的多倍体、自发性肿瘤发展,并使小鼠易患癌,表明 Cul9 是一种肿瘤抑制因子。相反,CUL9 的功能获得促进了 p53 依赖性细胞凋亡。我们进一步发现,CUL7 或其结合伴侣 OBSL1 的缺失会导致严重的微管损伤、染色单体排列异常、胞质分裂缺陷和广泛的有丝分裂细胞死亡,所有这些都可以通过同时缺失 CUL9 来挽救。这些广泛的初步结果使我们提出,脊椎动物中存在 OBSL1-CUL7-CUL9-p53 通路,该通路在有丝分裂期间感知微管应力,并且在功能上与成熟的纺锤体组装检查点分开。我们在这里提出了一系列严格的遗传和生化实验来检验这种新的 OBSL1-CUL7-CUL9-p53 通路在维持基因组完整性中的作用。在第一个目标中,我们将生成Cul7-Cul9和Obsl1-Cul9双敲除小鼠,以在体内对CUL7和CUL9以及OBSL1和CUL9之间的功能关系进行基因测试。在第二个目标中,我们将通过生成两只单独的敲入小鼠来对 p53 对通路的贡献进行基因测试,每只小鼠的 CUL7 和 CUL9 的 p53 结合域都有一个点突变。最后,我们将通过生化测试泛素化如何促进 OBSL1-CUL7-CUL9-p53 通路的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YUE XIONG其他文献

YUE XIONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YUE XIONG', 18)}}的其他基金

Mechanisms of Metabolic Gene Mutations in Cancer
癌症代谢基因突变的机制
  • 批准号:
    8611905
  • 财政年份:
    2012
  • 资助金额:
    $ 32.24万
  • 项目类别:
Mechanisms of Metabolic Gene Mutations in Cancer
癌症代谢基因突变的机制
  • 批准号:
    8434844
  • 财政年份:
    2012
  • 资助金额:
    $ 32.24万
  • 项目类别:
Mechanisms of Metabolic Gene Mutations in Cancer
癌症代谢基因突变的机制
  • 批准号:
    9010942
  • 财政年份:
    2012
  • 资助金额:
    $ 32.24万
  • 项目类别:
Mechanisms of Metabolic Gene Mutations in Cancer
癌症代谢基因突变的机制
  • 批准号:
    8219796
  • 财政年份:
    2012
  • 资助金额:
    $ 32.24万
  • 项目类别:
Cancer Cell Biology
癌细胞生物学
  • 批准号:
    8340183
  • 财政年份:
    2011
  • 资助金额:
    $ 32.24万
  • 项目类别:
Program Leaders
项目负责人
  • 批准号:
    8340160
  • 财政年份:
    2011
  • 资助金额:
    $ 32.24万
  • 项目类别:
The Cullin-ROC Family of E3 Ubiquitin Ligases
E3 泛素连接酶的 Cullin-ROC 家族
  • 批准号:
    8085407
  • 财政年份:
    2010
  • 资助金额:
    $ 32.24万
  • 项目类别:
The Physiological Function and Regulation of INK4 Genes
INK4基因的生理功能及调控
  • 批准号:
    7913867
  • 财政年份:
    2009
  • 资助金额:
    $ 32.24万
  • 项目类别:
The ROC-Cullin Family of E3 Ubiquitin Ligases
E3 泛素连接酶的 ROC-Cullin 家族
  • 批准号:
    6561926
  • 财政年份:
    2003
  • 资助金额:
    $ 32.24万
  • 项目类别:
Function and Mechanism of CUL4 E3 Ligases in Human Diseases
CUL4 E3 连接酶在人类疾病中的功能和机制
  • 批准号:
    8642184
  • 财政年份:
    2003
  • 资助金额:
    $ 32.24万
  • 项目类别:

相似国自然基金

开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
  • 批准号:
    42301183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
  • 批准号:
    72349001
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
政府数据开放与资本跨区域流动:影响机理与经济后果
  • 批准号:
    72302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel artificial intelligence-based approaches to understand the pathological and genetic drivers of primary tauopathies
基于人工智能的新方法来了解原发性 tau 蛋白病的病理和遗传驱动因素
  • 批准号:
    10701779
  • 财政年份:
    2022
  • 资助金额:
    $ 32.24万
  • 项目类别:
Novel artificial intelligence-based approaches to understand the pathological and genetic drivers of primary tauopathies
基于人工智能的新方法来了解原发性 tau 蛋白病的病理和遗传驱动因素
  • 批准号:
    10525775
  • 财政年份:
    2022
  • 资助金额:
    $ 32.24万
  • 项目类别:
Substrate Stiffness, Topography, and TRPV4 in AF Mechanotransduction
AF 机械传导中的基底刚度、形貌和 TRPV4
  • 批准号:
    10689826
  • 财政年份:
    2022
  • 资助金额:
    $ 32.24万
  • 项目类别:
High Resolution Profiling of Senescent Cells in ALS Brain and Spinal Cord
ALS 大脑和脊髓中衰老细胞的高分辨率分析
  • 批准号:
    10487832
  • 财政年份:
    2022
  • 资助金额:
    $ 32.24万
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10512067
  • 财政年份:
    2021
  • 资助金额:
    $ 32.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了