Polymer-Stabilized Mesenchymal Stem Cells for Spinal Cord Repair
用于脊髓修复的聚合物稳定间充质干细胞
基本信息
- 批准号:8466790
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-11-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAmericasAnalysis of VarianceAnimal Care and Use CommitteesAutologousBehavioralBiologicalBiological AssayBone MarrowBostonBrainCell Culture TechniquesCell SurvivalCellsChronicClinicalDataDiseaseElectrophysiology (science)EvaluationFoundationsGlycolatesGoalsHealthcare SystemsHumanHuman BiologyImplantIn VitroInflammationInjection of therapeutic agentInjuryLifeMeasuresMesenchymalMesenchymal Stem Cell TransplantationMesenchymal Stem CellsModelingMolecularNerveNerve RegenerationNeurodegenerative DisordersNeurologicNeuronal PlasticityOutcomeParalysedPatientsPilot ProjectsPlayPolymersProceduresRandomizedRattusRecoveryRecovery of FunctionRegimenRehabilitation therapyReportingRoleSensory DisordersSiteSolidSpinal cord injuryStem cellsStudentsSystemTestingTherapeuticTherapeutic EffectTransplantationTraumatic Brain InjuryTreatment EffectivenessTreatment EfficacyVeteransWestern Blottingadult stem cellbasebiodegradable polymerclinical applicationdesigneffective therapyfunctional disabilityfunctional improvementin vivonerve stem cellnovel therapeuticspainful neuropathypresent valueprototyperepairedrestorationscaffoldspinal cord repairspinal reflex
项目摘要
DESCRIPTION (provided by applicant):
OBJECTIVES: Our ultimate goal is to apply autologous human mesenchymal stromal stem cells (hMSCs) to repair the injured spinal cord, enabling enhanced functional rehabilitation for America's veterans after spinal cord injury (SCI). Histological and molecular improvements were previously reported in lab SCI models after MSC transplantation; however, to date, few studies showed substantial functional recovery. This attributes largely to the observed low viability and poor localization of implanted cells. We have uncovered that incorporation of neural stem cells into biodegradable polymer scaffolds boosted their survival and neurotrophic impacts in rat SCI, thereby permitting marked functional improvement. Thus, we propose to stabilize hMSCs in poly(lactic-co-glycolic acid) (PLGA) scaffolds in order to test our central hypothesis that hMSC-derived immunomodulatory and neuroplastic effects could be used to impede degeneration and promote repair and neuroplasticity, a bionecessity for SCI rehabilitation. RESEARCH DESIGN: Aim 1 is designed for determining the neurotrophic and immunomodulatory effects of hMSCs seeded in PLGA (1 Year). In Aim 2, we will assess the therapeutic potential of implanting scaffolded hMSCs in acute SCI (1.5 Years). Lastly, Aim 3 studies will determine the therapeutic efficacy of treating chronic SCI with scaffolded hMSCs implanted 70 d post SCI; (1.5 Years). We will first use our in vitro systems to evaluate the biology of hMSCs seeded in PLGA. Systematical characterization will then be done on the impact of providing PLGA support to augment viability of hMSCs at the injury site of a rat model of segmental hemisection SCI. Histological, immunocytochemical and molecular outcomes will be analyzed at 2 or 4 weeks post injury, which will be correlated with functional impairment after subacute and chronic SCI. The studies will be conducted according to a randomized block design. The size of the experimental groups is determined by power analyses previously reported. All outcome values are presented as mean 1 SEM. Application of the term "significant" in the tests implies p < 0.05. All experimental procedures will be reviewed and approved by the Animal Care and Use Committee of the VA Boston Healthcare System. Behavioral scores, cell survival and immunohistochemical results are analyzed using repeated measures ANOVA, followed by unpaired Student's t tests. Fisher's exact test and paired Student's t test are used for the statistical evaluation of spinal reflex recovery and histocytological and molecular outcomes. METHODOLOGY: We will use well established in vitro hMSC cultures and organotypic system, as well as our rat model of penetrating SCI (i.e., T9-T10 midline segmental hemisection) to test our hypotheses. Quantitative behavioral batteries, electrophysiology of spinal reflex and sensorimotor tests, and histopathologic assays will be also deployed. Finally, we will perform semi-quantitative Western Blot and quantitative rt-PCR assays for studies that measure expression changes of molecules that play pivotal roles in inflammation, neural plasticity and regeneration. FINDINGS: We have solid pilot and preliminary data to support our hypotheses. Findings obtained from these interlocked and yet independent aims will substantially increase our understanding on in vivo issues of viability and therapeutic interaction of hMSCs for devising polymer and hMSCs based multimechanistic strategies to treat SCI and establish novel therapeutic windows of post-SCI rehabilitation. CLINICAL RELATIONSHIPS: To date, there is still no effective treatment for SCI. Studies proposed in this project are specifically aimed at developing hMSCs into therapeutic regimens to treat paralysis and sensory disorders such as neuropathic pain following SCI. Since PLGA and hMSCs are already in clinical applications for other conditions, our study may introduce a highly effective approach for delivering hMSCs as multimodal anti-degenerative and pro-restorative agents for SCI, traumatic brain injury, and neurodegenerative diseases. IMPACT/SIGNIFICANCE: Effective recovery from traumatic spinal cord injury represents a currently unmet clinical need for about 42,000 US veterans. Our pilot studies demonstrated that hMSCs (a prototype adult stem cell) exert multimechanistic therapeutic effects in neurological systems. These hMSC-derived immunomodulatory and neuroplastic effects could be used to impede degeneration as well as promote restoration and neuroplasticity, which provides a biological foundation for augmenting therapeutic outcomes of SCI rehabilitation.
描述(由申请人提供):
目标:我们的最终目标是应用自体人间充质干细胞(hMSC)修复受伤的脊髓,从而增强美国退伍军人脊髓损伤(SCI)后的功能康复能力。之前报道过 MSC 移植后实验室 SCI 模型的组织学和分子学改善;然而,迄今为止,很少有研究表明功能有实质性恢复。这主要归因于观察到的植入细胞的低活力和较差的定位。我们发现,将神经干细胞纳入可生物降解的聚合物支架中可以提高其在大鼠 SCI 中的存活率和神经营养影响,从而显着改善功能。因此,我们建议将 hMSC 稳定在聚乳酸-乙醇酸 (PLGA) 支架中,以测试我们的中心假设,即 hMSC 衍生的免疫调节和神经可塑性作用可用于阻止退化并促进修复和神经可塑性,这是一种生物必要性用于 SCI 康复。研究设计:目标 1 旨在确定接种在 PLGA 中的 hMSC 的神经营养和免疫调节作用(1 年)。在目标 2 中,我们将评估植入支架 hMSC 在急性 SCI 中的治疗潜力(1.5 年)。最后,目标 3 研究将确定在 SCI 后 70 天植入支架 hMSC 治疗慢性 SCI 的治疗效果; (1.5 年)。我们将首先使用我们的体外系统来评估接种在 PLGA 中的 hMSC 的生物学特性。然后将对提供 PLGA 支持以增强节段性半切 SCI 大鼠模型损伤部位 hMSC 活力的影响进行系统表征。组织学、免疫细胞化学和分子结果将在损伤后 2 或 4 周进行分析,这将与亚急性和慢性 SCI 后的功能损伤相关。这些研究将根据随机区组设计进行。实验组的规模由先前报道的功效分析确定。所有结果值均以平均值 1 SEM 表示。在测试中应用术语“显着”意味着 p < 0.05。所有实验程序都将由 VA 波士顿医疗系统动物护理和使用委员会审查和批准。使用重复测量方差分析分析行为评分、细胞存活和免疫组织化学结果,然后进行不配对的学生 t 检验。 Fisher 精确检验和配对学生 t 检验用于脊髓反射恢复以及组织细胞学和分子结果的统计评估。方法学:我们将使用成熟的体外 hMSC 培养物和器官系统,以及我们的穿透性 SCI 大鼠模型(即 T9-T10 中线节段半切)来检验我们的假设。还将部署定量行为电池、脊髓反射电生理学和感觉运动测试以及组织病理学测定。最后,我们将进行半定量蛋白质印迹和定量 rt-PCR 检测,以测量在炎症、神经可塑性和再生中发挥关键作用的分子的表达变化。调查结果:我们有可靠的试点和初步数据来支持我们的假设。从这些相互关联而又独立的目标中获得的发现将大大增加我们对 hMSC 的活力和治疗相互作用的体内问题的理解,以设计基于聚合物和 hMSC 的多机制策略来治疗 SCI 并建立 SCI 后康复的新治疗窗口。临床关系:迄今为止,SCI 仍没有有效的治疗方法。该项目提出的研究专门旨在将 hMSC 开发为治疗方案,以治疗瘫痪和感觉障碍,例如 SCI 后的神经性疼痛。由于 PLGA 和 hMSC 已经在其他疾病的临床应用中,我们的研究可能会引入一种高效的方法,将 hMSC 作为多模式抗退行性和促恢复剂用于 SCI、创伤性脑损伤和神经退行性疾病。影响/意义:从创伤性脊髓损伤中有效恢复代表了约 42,000 名美国退伍军人目前未得到满足的临床需求。我们的初步研究表明 hMSC(一种原型成体干细胞)在神经系统中发挥多机制治疗作用。这些 hMSC 衍生的免疫调节和神经可塑性作用可用于阻止退化以及促进恢复和神经可塑性,这为增强 SCI 康复的治疗效果提供了生物学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANG D. TENG其他文献
YANG D. TENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANG D. TENG', 18)}}的其他基金
Polymer-Stabilized Mesenchymal Stem Cells for Spinal Cord Repair
用于脊髓修复的聚合物稳定间充质干细胞
- 批准号:
8840053 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Polymer-Stabilized Mesenchymal Stem Cells for Spinal Cord Repair
用于脊髓修复的聚合物稳定间充质干细胞
- 批准号:
8005372 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Polymer-Stabilized Mesenchymal Stem Cells for Spinal Cord Repair
用于脊髓修复的聚合物稳定间充质干细胞
- 批准号:
8838116 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Host and stem cell interactions in spinal cord injury: roles of nitric oxide
脊髓损伤中宿主和干细胞的相互作用:一氧化氮的作用
- 批准号:
7286831 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Host and stem cell interactions in spinal cord injury: roles of nitric oxide
脊髓损伤中宿主和干细胞的相互作用:一氧化氮的作用
- 批准号:
7148129 - 财政年份:2006
- 资助金额:
-- - 项目类别:
相似国自然基金
入侵植物美洲商陆富集重金属增强其入侵性的地上地下联合机制
- 批准号:32371751
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
饲料组胺引起美洲鳗鲡肠道炎症的分子机制研究
- 批准号:32303022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷酸化酪氨酸信号起始美洲大蠊附肢再生的生理功能与上游激活机制
- 批准号:32370510
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
强光介导下CpDll基因参与调控美洲南瓜叶缘裂刻形成的分子机制
- 批准号:32372709
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
白细胞介素-1受体相关激酶4(IRAK4)调控裸仁美洲南瓜种皮形成的分子机理
- 批准号:32360759
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Promoting Advance Care Planning as a Healthy Behavior
促进预先护理计划作为一种健康行为
- 批准号:
9284247 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Promoting Advance Care Planning as a Healthy Behavior
促进预先护理计划作为一种健康行为
- 批准号:
10186495 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Promoting Advance Care Planning as a Healthy Behavior
促进预先护理计划作为一种健康行为
- 批准号:
10018500 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Promoting Advance Care Planning as a Healthy Behavior
促进预先护理计划作为一种健康行为
- 批准号:
10028218 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Polymer-Stabilized Mesenchymal Stem Cells for Spinal Cord Repair
用于脊髓修复的聚合物稳定间充质干细胞
- 批准号:
8840053 - 财政年份:2010
- 资助金额:
-- - 项目类别: