Optogenetic Approaches to Functional Recovery After Stroke
中风后功能恢复的光遗传学方法
基本信息
- 批准号:8670793
- 负责人:
- 金额:$ 19.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-15 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdhesivesAdverse effectsAffectAnimalsAreaAutomobile DrivingBehavioralBrainBrain regionBrain-Derived Neurotrophic FactorCandidate Disease GeneCellsCerebrovascular CirculationCessation of lifeDataDentate nucleusDepressed moodDrug TargetingElectric StimulationEnzyme-Linked Immunosorbent AssayFGF2 geneGenesGoalsGrantGrowthGrowth Associated Protein 43HalorhodopsinsHumanImmunohistochemistryLabelLaser-Doppler FlowmetryLeadLifeLightMediatingMotorMotor CortexMusNeurologicNeuronal PlasticityNeuronsOutcomePhasePresynaptic TerminalsProcessProteinsRecoveryRecovery of FunctionSiteStrokeSurvivorsSynapsesSynaptophysinTechniquesTestingTherapeuticTranscranial magnetic stimulationTransgenic MiceUnited StatesVascular Endothelial Growth Factorsaxon growthaxonal sproutingbehavior testbiotinylated dextran aminebrain remodelingbrain repaircell typedisabilityeffective therapyimprovedmicrobialmillisecondneural circuitneuronal excitabilityneurotrophic factornovelnovel strategiesoptogeneticspost strokepre-clinicalpromoterpublic health relevancerepairedstroke recoverysynaptogenesis
项目摘要
DESCRIPTION (provided by applicant): Stroke is a major acute neurological insult that disrupts brain function and causes neuron death. Each year about 800,000 people are affected by stroke in the United States, and most survivors often live with long-term disability. Functional
recovery can occur after stroke, and this recovery is attributed to brain remodeling and neuroplasticity, when the brain repairs and rebuilds connections between neurons. Brain stimulation techniques such as electrical stimulation or transcranial magnetic stimulation have been used in animals and humans to enhance recovery after stroke. However, the neural circuits involved and the mechanisms mediating this recovery are not well understood. In addition, these stimulation techniques non-specifically stimulate all cell types near the stimulation site, leading to undesired side effects. In this proposal, we will use the optogenetic approach to specifically stimulate neurons after stroke and examine the effects on functional recovery and the underlying mechanisms. Optogenetics is a novel strategy that utilizes light-sensitive algal proteins, such as Channelrhodopsin (ChR2), to manipulate the excitability of specific cell groups in the brain, in a fast and precise manner. Optogenetic stimulation can increase neuronal excitability, potentially leading to release of neurotrophic factors, enhancement of axonal spouting/synaptogenesis and increased cerebral blood flow, all of which are important in functional recovery after stroke. Therefore, we hypothesize that optogenetic stimulation of neurons in the primary motor cortex (M1) can augment endogenous repair/plasticity mechanisms and promote recovery after stroke. We will use a transgenic mouse line expressing ChR2 under a neuronal promoter to test our hypothesis. Our preliminary data show that optogenetic stimulation of neurons in the ipsilesional primary motor cortex of mice improved their behavioral recovery after stroke. In Aim 1, we will use sensorimotor behavior tests to evaluate functional recovery after optogenetic neuronal stimulation in various brain regions after stroke. We will start stimulation during the recovery phase of stroke and determine the most optimal brain stimulation target for promoting stroke recovery. In Aim2, we will investigate the underlying mechanisms that drive this recovery, including changes in cerebral blood flow, release of neurotrophic factors, axonal sprouting and synaptogenesis. Our study will advance the understanding of endogenous repair and plasticity mechanisms underlying recovery after stroke, as well as determine the most optimal brain stimulation target to promote recovery. Understanding the proteins and processes involved during repair and recovery could lead to novel discoveries of therapeutic drug targets able to facilitate recovery after stroke.
描述(由申请人提供):中风是破坏大脑功能并导致神经元死亡的主要急性神经系统侮辱。在美国,每年约有80万人受到中风的影响,大多数幸存者经常生活长期残疾。功能
中风后可能发生恢复,并且当大脑修复并重建神经元之间的连接时,这种恢复归因于脑重塑和神经可塑性。脑刺激技术(例如电刺激或经颅磁刺激)已用于动物和人类中,以增强中风后的恢复。但是,涉及的神经回路和介导这种恢复的机制尚不清楚。此外,这些刺激技术非特异性刺激刺激部位附近的所有细胞类型,从而导致不希望的副作用。在此提案中,我们将使用光遗传学方法在中风后特异性刺激神经元,并检查对功能恢复和潜在机制的影响。光遗传学是一种新型策略,它利用光敏藻类蛋白(例如ChannelRhopopsin(Chr2))以快速而精确的方式操纵大脑中特定细胞基团的兴奋性。光遗传学刺激可以提高神经元兴奋性,可能导致神经营养因子释放,增强轴突吐剂/突触发生和脑血流增加,所有这些对中风后的功能恢复都很重要。因此,我们假设原发性运动皮层(M1)中神经元的光遗传学刺激可以增强内源性修复/可塑性机制并促进中风后恢复。我们将使用在神经元启动子下表达CHR2的转基因小鼠系来检验我们的假设。我们的初步数据表明,小鼠ipsilesiles原发性运动皮层中神经元的光遗传刺激改善了中风后其行为恢复。在AIM 1中,我们将使用感觉运动行为测试来评估中风后各个大脑区域的光遗传神经元刺激后的功能恢复。我们将在中风的恢复阶段开始刺激,并确定促进中风恢复的最佳脑刺激靶标。在AIM2中,我们将研究驱动这种恢复的潜在机制,包括脑血流的变化,神经营养因素的释放,轴突发芽和突触发生。我们的研究将促进中风后恢复后恢复后的内源性修复和可塑性机制的理解,并确定促进恢复的最佳脑刺激靶标。了解修复和恢复过程中所涉及的蛋白质和过程可能会导致对能够促进中风后恢复的治疗药物靶标的新发现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY K STEINBERG其他文献
GARY K STEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY K STEINBERG', 18)}}的其他基金
Investigating the pathogenesis of Moyamoya Disease using patient derived induced pluripotent stem cells
使用患者来源的诱导多能干细胞研究烟雾病的发病机制
- 批准号:
10487543 - 财政年份:2021
- 资助金额:
$ 19.6万 - 项目类别:
Investigating the pathogenesis of Moyamoya Disease using patient derived induced pluripotent stem cells
使用患者来源的诱导多能干细胞研究烟雾病的发病机制
- 批准号:
10373587 - 财政年份:2021
- 资助金额:
$ 19.6万 - 项目类别:
Stanford Neuroscience Research Cores for Gene Vectors, Microscopy, and Behaviors
斯坦福大学神经科学研究基因载体、显微镜和行为核心
- 批准号:
9923475 - 财政年份:2019
- 资助金额:
$ 19.6万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
10364739 - 财政年份:2015
- 资助金额:
$ 19.6万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
10530685 - 财政年份:2015
- 资助金额:
$ 19.6万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
10211210 - 财政年份:2015
- 资助金额:
$ 19.6万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
9288239 - 财政年份:2015
- 资助金额:
$ 19.6万 - 项目类别:
Meningeal Mast Cells: Key effectors of stroke pathology
脑膜肥大细胞:中风病理学的关键效应器
- 批准号:
8512591 - 财政年份:2013
- 资助金额:
$ 19.6万 - 项目类别:
Meningeal Mast Cells: Key effectors of stroke pathology
脑膜肥大细胞:中风病理学的关键效应器
- 批准号:
8623155 - 财政年份:2013
- 资助金额:
$ 19.6万 - 项目类别:
Optogenetic Approaches to Functional Recovery After Stroke
中风后功能恢复的光遗传学方法
- 批准号:
8492882 - 财政年份:2013
- 资助金额:
$ 19.6万 - 项目类别:
相似国自然基金
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optogenetic Approaches to Functional Recovery After Stroke
中风后功能恢复的光遗传学方法
- 批准号:
8492882 - 财政年份:2013
- 资助金额:
$ 19.6万 - 项目类别:
HTS platform for identification of regulators of cell adhesion molecule signaling
用于鉴定细胞粘附分子信号传导调节因子的 HTS 平台
- 批准号:
8420443 - 财政年份:2012
- 资助金额:
$ 19.6万 - 项目类别: