Risk-Adjusting Hospital Outcomes for Veteran's Socioeconomic Status
根据退伍军人的社会经济地位调整医院结果的风险
基本信息
- 批准号:9757603
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAdmission activityAffordable Care ActAgeBenchmarkingCalibrationCaringCharacteristicsClinicalCollaborationsConsensusDataDiagnosisDiscriminationElectronic Health RecordEnrollmentEthnic OriginGoalsHealth Information SystemHealth PolicyHealthcare SystemsHeart RateHeart failureHomelessnessHospital MortalityHospitalsIncentivesIncomeLearningMeasurementMeasuresMedicaidMedical centerMedicareMethodsModelingMortality DeterminantsNeighborhoodsNursing HomesObservational StudyOutcomeOutcome MeasurePatientsPerformancePneumoniaPredictive FactorPrivate SectorProviderRaceRecordsReportingResearchResearch PriorityResource AllocationRiskRisk AdjustmentRoleScienceSiteSocioeconomic StatusSourceStatistical ModelsTestingUnited StatesVariantVeteransbasecare outcomesclinical riskdeprivationevidence baseexpectationhigh risk populationhospital performanceimprovedinnovationinpatient servicemortalitymortality risknovelnovel strategiesoperationpatient populationpaymentperformance testspolicy implicationpredictive modelingprogramsresidencesexsociodemographic factorssociodemographic variablessociodemographicstool
项目摘要
Anticipated Impacts of Veterans' Care: The project will develop and test novel approaches to risk-
adjustment that include Veterans' sociodemographic factors into assessments of VAMC-level hospital
mortality. This contribution is significant because rigorous outcomes measurement is central to VA's strategy to
improve care for Veterans, assess quality across sites, and benchmark performance to the private-sector. If
risk-adjustment fails to account for sociodemographic determinants of mortality that are known to vary across
VA providers, then excluding these factors may penalize VA sites that disproportionately serve vulnerable
patients and generate incorrect inferences about the quality of VA care. Since VA uses performance results for
accountability purposes and to make determinations about allocation of resources, it is essential that VA uses
the most robust risk-adjustment methods available. Given emerging momentum to consider sociodemographic
characteristics for risk-adjustment purposes, there is a pressing need to develop an empirical evidence base
about the implications of such adjustments.
Project Background: Nearly all hospitals in the United States, including all VA Medical Centers (VAMCs),
report mortality rates for hospitalized patients, and performance on these outcomes measures often carry high
stakes. Hospital mortality constitutes two domains of the Strategic Analytic Information and Learning (SAIL)
model that VA employs to evaluate the quality and efficiency of care provided across all VAMCs. Valid hospital
outcome measures must adequately account for differences in clinical risk. Without adequate risk-adjustment,
performance reports may erroneously penalize facilities that serve high-risk populations, or, even worse,
incentivize facilities to admit low-risk patients. Much of the prior concern with risk-adjustment has involved the
source of the data, the selection of appropriate covariates, or the optimal approach to statistical modeling.
Substantially fewer studies have examined the role of socioeconomic status and other sociodemographic
factors in risk-adjustment, though these factors predict worse post-discharge outcomes and vary markedly
across facilities.
Project Objective: The overarching goal of this project is to develop and test novel risk-adjustment
approaches that incorporate Veterans' sociodemographic characteristics into assessments of hospital
mortality. Our aims are: (1) describe VAMC-level variations in the sociodemographic characteristics of
Veterans hospitalized with heart failure and pneumonia; (2) assess the performance of risk-adjustment models
that do and do not include sociodemographic characteristics; and (3) evaluate the impact of incorporating
sociodemographic data on the relative performance of VA Medical Centers.
Project Methods: We propose a retrospective, observational study that will develop and compare alternative
risk-adjustment models predicting mortality within thirty days of admission for heart failure and pneumonia. We
will then test the performance of models that do and do not incorporate sociodemographic characteristics and
assess the impact of including sociodemographic characteristics on profiling VAMC-level hospital mortality
rates for heart failure and pneumonia. Aim 1 will assess how the sociodemographic characteristics of Veterans
admitted with heart failure and pneumonia vary across VAMCs. Aim 2 will compare the existing claims-based
VA/CMS risk-adjusted mortality models for heart failure and pneumonia with models that incorporate claims
and novel sociodemographic data; and determine the contribution of sociodemographic characteristics to
mortality models that include both claims-based diagnoses and clinical covariates derived from the VA's
electronic health record. Aim 3 extends these analyses by determining whether relative quality rankings of VA
medical centers change when sociodemographic factors are included in mortality risk-adjustment models.
.
退伍军人护理的预期影响:该项目将开发和测试新的风险方法
将退伍军人的社会人口因素纳入 VAMC 级医院评估的调整
死亡。这一贡献意义重大,因为严格的结果衡量是 VA 战略的核心
改善对退伍军人的护理,评估各个站点的质量,并对私营部门的绩效进行基准测试。如果
风险调整未能考虑到死亡率的社会人口决定因素,而已知这些因素在不同国家之间存在差异
VA 提供商,然后排除这些因素可能会惩罚过度为弱势群体提供服务的 VA 网站
患者并对 VA 护理质量产生错误的推论。由于 VA 使用性能结果
为了实现问责目的并决定资源分配,VA 必须使用
可用的最稳健的风险调整方法。鉴于考虑社会人口统计学的新兴势头
出于风险调整目的,迫切需要开发经验证据基础
关于此类调整的影响。
项目背景:美国几乎所有医院,包括所有 VA 医疗中心 (VAMC),
报告住院患者的死亡率,并且这些结果指标的表现通常很高
赌注。医院死亡率构成战略分析信息和学习 (SAIL) 的两个领域
VA 用于评估所有 VAMC 提供的护理质量和效率的模型。有效医院
结果测量必须充分考虑临床风险的差异。如果没有充分的风险调整,
绩效报告可能会错误地惩罚为高风险人群提供服务的设施,或者更糟糕的是,
激励机构接纳低风险患者。先前对风险调整的关注大多涉及
数据源、适当协变量的选择或统计建模的最佳方法。
很少有研究考察社会经济地位和其他社会人口统计学的作用
风险调整的因素,尽管这些因素预测出院后结果会更差,并且差异显着
跨设施。
项目目标:该项目的总体目标是开发和测试新的风险调整
将退伍军人的社会人口特征纳入医院评估的方法
死亡。我们的目标是:(1) 描述 VAMC 社会人口特征的变化
退伍军人因心力衰竭和肺炎住院; (2)评估风险调整模型的表现
包括或不包括社会人口特征; (3) 评估纳入的影响
关于 VA 医疗中心相对绩效的社会人口统计数据。
项目方法:我们提出一项回顾性观察研究,该研究将开发和比较替代方案
风险调整模型预测因心力衰竭和肺炎入院三十天内的死亡率。我们
然后将测试包含和不包含社会人口特征的模型的性能,
评估社会人口统计特征对 VAMC 级医院死亡率分析的影响
心力衰竭和肺炎的发生率。目标 1 将评估退伍军人的社会人口特征
因心力衰竭和肺炎入院的 VAMC 各不相同。目标 2 将比较现有的基于声明的
VA/CMS 心力衰竭和肺炎风险调整死亡率模型,模型包含索赔
以及新颖的社会人口统计数据;并确定社会人口特征对
死亡率模型,包括基于索赔的诊断和源自 VA 的临床协变量
电子健康记录。目标 3 通过确定 VA 的相对质量排名是否扩展了这些分析
当死亡风险调整模型纳入社会人口因素时,医疗中心就会发生变化。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMAL N. TRIVEDI其他文献
AMAL N. TRIVEDI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMAL N. TRIVEDI', 18)}}的其他基金
Impact of COVID-era Disrupted Care on Disparities in Outcomes among Veterans with Kidney Failure
新冠病毒时代护理中断对肾功能衰竭退伍军人结果差异的影响
- 批准号:
10755601 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of COVID-era Disrupted Care on Disparities in Outcomes among Veterans with Kidney Failure
新冠病毒时代护理中断对肾功能衰竭退伍军人结果差异的影响
- 批准号:
10424969 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Effects of Expanding Medicare Advantage Enrollment toPersons with End-stage Renal Disease
扩大医疗保险优惠覆盖范围对终末期肾病患者的影响
- 批准号:
10435533 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Effects of Expanding Medicare Advantage Enrollment toPersons with End-stage Renal Disease
扩大医疗保险优惠覆盖范围对终末期肾病患者的影响
- 批准号:
10275943 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Effects of Expanding Medicare Advantage Enrollment toPersons with End-stage Renal Disease
扩大医疗保险优惠覆盖范围对终末期肾病患者的影响
- 批准号:
10609923 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Infection Control Measures in Dialysis Facilities after COVID-19: Disparities in Adoption and Impact on Hospitalization and Mortality
COVID-19 后透析设施的感染控制措施:采用差异以及对住院和死亡率的影响
- 批准号:
10321302 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Infection Control Measures in Dialysis Facilities after COVID-19: Disparities in Adoption and Impact on Hospitalization and Mortality
COVID-19 后透析设施的感染控制措施:采用差异以及对住院和死亡率的影响
- 批准号:
10193135 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Impact of VA Disability and Health Benefits on Long-Term Diabetes Outcomes among Vietnam-Era Veterans
退伍军人事务部残疾和健康福利对越战时期退伍军人长期糖尿病结局的影响
- 批准号:
10051323 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Medicaid Expansion, Coverage Loss, and Disparities in Kidney Health in the COVID-19 Era
COVID-19 时代的医疗补助范围扩大、覆盖范围缩小以及肾脏健康方面的差异
- 批准号:
10447753 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Risk-Adjusting Hospital Outcomes for Veteran's Socioeconomic Status
根据退伍军人的社会经济地位调整医院结果的风险
- 批准号:
9188841 - 财政年份:2017
- 资助金额:
-- - 项目类别:
相似海外基金
The role of state Medicaid policies in treatment for opioid use disorder in the criminal justice population: Evidence from the Treatment Episode Datasets
州医疗补助政策在刑事司法人群阿片类药物使用障碍治疗中的作用:来自治疗事件数据集的证据
- 批准号:
10352607 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Medicaid Expansion and Maternal Health in Racial and Ethnic Minority Women
少数族裔妇女的医疗补助扩展和孕产妇健康
- 批准号:
10495195 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development and validation of precision blood volume diagnostic and decision support device for acute decompensated heart failure
急性失代偿性心力衰竭精准血容量诊断和决策支持装置的开发和验证
- 批准号:
10474788 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Medicaid Expansion and Maternal Health in Racial and Ethnic Minority Women
少数族裔妇女的医疗补助扩展和孕产妇健康
- 批准号:
10283253 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development and validation of precision blood volume diagnostic and decision support device for acute decompensated heart failure
急性失代偿性心力衰竭精准血容量诊断和决策支持装置的开发和验证
- 批准号:
10156602 - 财政年份:2021
- 资助金额:
-- - 项目类别: