Mechanical and Dynamical Regulation of Protein Kinases

蛋白激酶的机械和动态调节

基本信息

项目摘要

DESCRIPTION (provided by applicant): Protein kinases are a family of key enzymes that regulate cellular function under healthy conditions and misregulate cellular function in diseased conditions, such as cancer. Protein kinases are complex, highly-regulated, and dynamic enzymes whose primary function is not to turn over substrate but rather to integrate biological signals to make targeted post-translational modifications (phosphorylation) in specific substrates. Since the catalytic core of kinases is structurally conserved across the whole family, kinase structure is not sufficient to provide precise control over activity and substrate specificity. Drug design against kinases is challenging because this conserved active site structure can lead to off-target binding, which takes drug away from the desired target and causes unforeseen side effects. In order to design novel drugs that target non-catalytic sites in the kinase and drugs that might operate by kinetic rather than thermodynamic control, it is imperative to understand how dynamics regulate function in kinases at mechanistic level, and how this dynamic regulation evolved. To predict how novel drugs might modulate kinase function, it is important to develop computational tools to observe how these dynamics are altered by perturbations such as mutations or substrate binding. To study functional kinase dynamics in detail, NMR spectroscopy will be combined with advanced conformational sampling methods that take advantage of commodity graphics processors to study slow motions relevant to catalysis. Markov State Model methods will be improved to interpret NMR chemical shifts and relaxation-dispersion data at an atomic level. A covariance of mechanical stress approach will be developed along with transfer entropy analysis in internal coordinates to identify mechanistic cause and effect in active site opening, the rate- limiting step in catalysis. Residues implicated by these analyses will be mutated, and the kinase's slow dynamics studied by NMR. The role of dynamics in substrate specificity will be studied by monitoring the substrate's effects on kinase dynamics - locally, and at distal substrate docking sites, using molecular dynamics simulations with and without substrate peptides. Dynamical changes caused by substrate peptide binding will be compared across multiple kinases to identify the conservation of dynamic coupling between the active site and a distal C-lobe substrate docking site, and to potentially guide design of novel drugs that could potentially have fewer off-target effects or that might alter a kinase's substrate specificity.
描述(由申请人提供):蛋白激酶是一个关键酶家族,其在健康条件下调节细胞功能,并在疾病条件(例如癌症)下错误调节细胞功能。蛋白激酶是复杂的、高度调控的动态酶,其主要功能不是翻转底物,而是整合生物信号以在特定底物中进行有针对性的翻译后修饰(磷酸化)。由于激酶的催化核心在整个家族中结构保守,因此激酶结构不足以提供对活性和底物特异性的精确控制。针对激酶的药物设计具有挑战性,因为这种保守的活性位点结构可能导致脱靶结合,从而使药物远离所需靶标并导致不可预见的副作用。为了设计针对激酶中非催化位点的新药物和可能通过动力学而不是热力学控制起作用的药物,必须了解动力学如何在机械水平上调节激酶的功能,以及这种动态调节是如何演变的。为了预测新药物如何调节激酶功能,开发计算工具来观察突变或底物结合等扰动如何改变这些动力学非常重要。为了详细研究功能激酶动力学,核磁共振波谱将与先进的构象采样方法相结合,利用商用图形处理器来研究与催化相关的慢动作。马尔可夫状态模型方法将得到改进,以在原子水平上解释 NMR 化学位移和弛豫色散数据。将开发机械应力方法的协方差以及内坐标中的传递熵分析,以识别活性位点开放(催化中的限速步骤)的机械原因和影响。这些分析涉及的残基将发生突变,并且通过 NMR 研究激酶的缓慢动力学。将通过使用有或没有底物肽的分子动力学模拟在局部和远端底物对接位点监测底物对激酶动力学的影响来研究动力学在底物特异性中的作用。底物肽结合引起的动态变化将在多个激酶之间进行比较,以确定活性位点和远端 C 叶底物对接位点之间动态耦合的守恒性,并有可能指导新药物的设计,从而减少脱靶效应或可能改变激酶的底物特异性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Lee McClendon其他文献

Christopher Lee McClendon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Lee McClendon', 18)}}的其他基金

Mechanical and Dynamical Regulation of Protein Kinases
蛋白激酶的机械和动态调节
  • 批准号:
    8409855
  • 财政年份:
    2011
  • 资助金额:
    $ 3.58万
  • 项目类别:
Mechanical and Dynamical Regulation of Protein Kinases
蛋白激酶的机械和动态调节
  • 批准号:
    8199019
  • 财政年份:
    2011
  • 资助金额:
    $ 3.58万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
  • 批准号:
    10822482
  • 财政年份:
    2023
  • 资助金额:
    $ 3.58万
  • 项目类别:
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
  • 批准号:
    10718390
  • 财政年份:
    2023
  • 资助金额:
    $ 3.58万
  • 项目类别:
Development of a Selective Mu-Delta Opioid Receptor Heterodimer Antagonist Using a Linked Bivalent Pharmacophore Approach
使用关联二价药效团方法开发选择性 Mu-Delta 阿片受体异二聚体拮抗剂
  • 批准号:
    9530416
  • 财政年份:
    2018
  • 资助金额:
    $ 3.58万
  • 项目类别:
New Use of Old Drugs for Zika Virus
老药新用途对抗寨卡病毒
  • 批准号:
    9412543
  • 财政年份:
    2017
  • 资助金额:
    $ 3.58万
  • 项目类别:
INHIBITORS OF THE PHD2 ZINC FINGER TO TREAT ANEMIA
PHD2 锌指抑制剂治疗贫血
  • 批准号:
    9345190
  • 财政年份:
    2017
  • 资助金额:
    $ 3.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了