Mechanism of Caulobacter adhesion
柄杆菌粘附机制
基本信息
- 批准号:8324412
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAnabolismAtomic Force MicroscopyBacteriaBacterial AdhesinsBacterial AdhesionBiochemicalBiologicalBiological ModelsBiophysicsCaulobacterCaulobacter crescentusCell CycleCell Cycle RegulationCell surfaceCellsComplexCoupledDiseaseEnvironmentFiberFilamentFlagellaFluorescence MicroscopyFutureGenesGenetic ScreeningGoalsImmunoblot AnalysisImmunofluorescence MicroscopyIndividualIndustryLife Cycle StagesMeasuresMembraneMethodsMicrobial BiofilmsMicromanipulationMicroscopyModelingPathogenesisPilumPlayPolysaccharidesProcessProtein BiosynthesisProtein Export PathwayProtein Tyrosine KinaseProteinsProteolysisRegulationResearchResearch PersonnelRoleSecretinStagingStructureSurfaceSystemTertiary Protein StructureTestingTimeVirulence Factorsadhesion processarmcell motilitygene functionimprovedinsightlaser tweezermutantpathogenpathogenic bacteriaprotein functionresearch studytheories
项目摘要
DESCRIPTION (provided by applicant): The adhesion of bacteria to surfaces plays an important role in disease, providing the critical first step in the biofouling of a surface and in biofilm formation. The general goal of this research is to reach a detailed understanding of the mechanisms of bacterial adhesion, from the biophysics of adhesion to the coordination of the biosynthesis of cell surface structures that participate in this process. This project takes advantage of the bacterium Caulobacter crescentus, in which adhesive structures are synthesized in an ordered fashion at the same pole of the cell, making the study of adhesion more amenable than in most bacteria. Initial stages of adhesion involve flagellar motility and pili, and adhesion is cemented by synthesis of a polysaccharide holdfast. Pathogenic bacteria also use these adhesive structures, but their mechanism of action in adhesion is poorly understood. In addition, the adhesive force of individual Caulobacter cells is the strongest ever measured for a biological adhesive. This project has three major aims. The first aim will use highly synchronized cultures coupled to atomic force microscopy, fluorescence microscopy, and biophysical modeling to develop a detailed understanding of the various stages of adhesion. In particular, this aim will investigate a newly discovered surface contact-dependent trigger of adhesive polysaccharide export; this mechanism may also be used by pathogens. The second aim is to determine the function of holdfast polysaccharide synthesis and attachment proteins. Experiments are described to determine the biochemical function of these proteins and their contribution to adhesion. The third aim is to elucidate the mechanisms that control the timing and polar localization of holdfast synthesis. The effect of constitutively expressing holdfast synthesis proteins during the cell cycle on the timing of holdfast synthesis and adhesion will be determined. The localization of holdfast synthesis and attachment proteins and their interdependence for localization will be studied, and factors required for their localization will be identified. Bacterial adhesion, polysaccharide biosynthesis, and subcellular localization of proteins and virulence factors are essential components of bacterial pathogenesis. Insight gained from the study of this simple model system will be applicable to more complex bacterial pathogens and will enhance our ability to inhibit them.
描述(由申请人提供):细菌在表面上的粘附在疾病中起着重要作用,为表面生物污垢和生物膜形成提供了关键的第一步。这项研究的总体目标是详细了解细菌粘附的机制,从粘附的生物物理学到参与该过程的细胞表面结构的生物合成的协调。该项目利用了新月柄杆菌,其中粘附结构在细胞的同一极以有序的方式合成,使得粘附研究比大多数细菌更容易进行。粘附的初始阶段涉及鞭毛运动和菌毛,并且通过多糖固着剂的合成来巩固粘附。病原菌也使用这些粘附结构,但其粘附作用机制尚不清楚。此外,单个柄杆菌细胞的粘附力是迄今为止测量的生物粘合剂中最强的。该项目有三个主要目标。第一个目标将使用高度同步的培养物与原子力显微镜、荧光显微镜和生物物理模型相结合,以详细了解粘附的各个阶段。特别是,该目标将研究新发现的粘性多糖输出的表面接触依赖性触发因素;病原体也可能使用这种机制。第二个目的是确定固着多糖合成和附着蛋白的功能。描述了实验以确定这些蛋白质的生化功能及其对粘附的贡献。第三个目标是阐明控制固着合成的时间和极性定位的机制。将确定细胞周期期间组成型表达固着器合成蛋白对固着器合成和粘附的时间的影响。将研究固着合成和附着蛋白的定位及其定位的相互依赖性,并鉴定其定位所需的因素。细菌粘附、多糖生物合成以及蛋白质和毒力因子的亚细胞定位是细菌发病机制的重要组成部分。从这个简单模型系统的研究中获得的见解将适用于更复杂的细菌病原体,并将增强我们抑制它们的能力。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accumulation of swimming bacteria near a solid surface.
- DOI:10.1103/physreve.84.041932
- 发表时间:2011-10-28
- 期刊:
- 影响因子:0
- 作者:Guanglai Li;James Bensson;Liana Nisimova;Daniel Munger;Panrapee Mahautmr;Jay X. Tang;M. Maxey;Y. Bru
- 通讯作者:Y. Bru
Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.
大肠杆菌和新月柄杆菌的 UDP-葡萄糖:十一碳二烯基磷酸葡萄糖-1-磷酸转移酶的功能表征。
- DOI:
- 发表时间:2012-05
- 期刊:
- 影响因子:3.2
- 作者:Patel, Kinnari B;Toh, Evelyn;Fernandez, Ximena B;Hanuszkiewicz, Anna;Hardy, Gail G;Brun, Yves V;Bernards, Mark A;Valvano, Miguel A
- 通讯作者:Valvano, Miguel A
A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm.
细菌细胞外 DNA 抑制活动子代细胞在生物膜内的沉降。
- DOI:
- 发表时间:2010-08
- 期刊:
- 影响因子:3.6
- 作者:Berne, Cécile;Kysela, David T;Brun, Yves V
- 通讯作者:Brun, Yves V
Amplified effect of Brownian motion in bacterial near-surface swimming.
布朗运动在细菌近表面游泳中的放大效应。
- DOI:
- 发表时间:2008-11-25
- 期刊:
- 影响因子:11.1
- 作者:Li, Guanglai;Tam, Lick;Tang, Jay X
- 通讯作者:Tang, Jay X
Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.
由碰撞和旋转布朗运动介导的微型游泳者在表面附近的聚集。
- DOI:10.1103/physrevlett.103.078101
- 发表时间:2009-08-14
- 期刊:
- 影响因子:8.6
- 作者:Li G;Tang JX
- 通讯作者:Tang JX
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YVES V BRUN其他文献
YVES V BRUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YVES V BRUN', 18)}}的其他基金
Bacterial Subcellular Organization and its Impact on Growth, Development, Aging, and Surface Adhesion
细菌亚细胞组织及其对生长、发育、衰老和表面粘附的影响
- 批准号:
9276966 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
2014 Bacterial Cell Surfaces Gordon Research Conference
2014年细菌细胞表面戈登研究会议
- 批准号:
8785778 - 财政年份:2014
- 资助金额:
$ 10.48万 - 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
- 批准号:
8344340 - 财政年份:2012
- 资助金额:
$ 10.48万 - 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
- 批准号:
8656372 - 财政年份:2012
- 资助金额:
$ 10.48万 - 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
- 批准号:
8518406 - 财政年份:2012
- 资助金额:
$ 10.48万 - 项目类别:
相似国自然基金
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of lipoteichoic acid in surface protein presentation
研究脂磷壁酸在表面蛋白呈递中的作用
- 批准号:
10471833 - 财政年份:2018
- 资助金额:
$ 10.48万 - 项目类别:
Biosynthesis and regulation of a unipolar polysaccharide in Agrobacterium
农杆菌中单极性多糖的生物合成和调控
- 批准号:
9384094 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
Elucidating the Mechanistic Basis of H. capsulatum-Macrophage Interactions
阐明荚膜梭菌-巨噬细胞相互作用的机制基础
- 批准号:
9121108 - 财政年份:2016
- 资助金额:
$ 10.48万 - 项目类别:
Discovering Histoplasma factors required for initial macrophage interaction
发现初始巨噬细胞相互作用所需的组织胞浆菌因子
- 批准号:
9243585 - 财政年份:2016
- 资助金额:
$ 10.48万 - 项目类别: