Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension

高血压动脉僵硬进展的机制

基本信息

  • 批准号:
    8588345
  • 负责人:
  • 金额:
    $ 38.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cardiovascular disease remains the leading cause of death and disability in the USA and stiffening of central arteries is now an unquestioned independent risk factor for many such diseases, including heart attack, stroke, and end-stage renal disease. The six primary determinants of the structural stiffness of arteries are elastic fiber integrity, collagen organization, smooth muscle tone, wall thickness, axial pre-stretch, and perivascular support, each of which has a molecular and cellular basis and affects system-level hemodynamics. Easily measured clinical metrics, such as pulse wave velocity, can and must play an increasingly greater role in cardiovascular risk assessment, but we must understand much better the mechanical and biological basis for changes in such metrics. For example, the relation between pulse wave velocity and arterial stiffness is often justified based on the Moens-Korteweg equation, which ignores almost all of the key determinants of wall stiffness. Our approach is unique because we will be the first to combine genetically modified mouse models and pharmacological interventions to delineate directly the effects on the material stiffness of the wall due to the integrity of elastic fibers, organization of collagen fibers, and contractility of smooth muscle. Moreover, this information will be incorporated within a novel computational tool that will allow effects of axial prestretch, perivascular support, and most importantly spatially and temporally progressive changes in large artery wall composition on hemodynamic metrics to be rigorously assessed for the first time. In particular, we suggest that large artery stiffening likely progresses from proximal to distal large arteries and identification of the early onset of such changes (e.g., prior to marked changes in pulse wave velocity) may allow earlier diagnosis and thus more effective intervention, prior to the propagation of detrimental effects of large artery stiffening to distal muscular arteries and eventually the microvessels, changes to which may be more difficult to reverse pharmacologically. Hence, we seek to deepen our fundamental understanding of the basis of arterial stiffening and to enable better clinical assessments and treatment planning based on readily available data. Specifically, we hypothesize that central arteries stiffen due, in large part, to a cyclic-strain induced damage to or degradation of elastic fibers that likely progresses over time from proximal to distal arteries because of initial spatial distributions of elastin and associated wall strains. To test this hypothesis, we will quantify and compare for the first time progressive changes in wall mechanics, composition, and hemodynamics in 3 basic mouse models (wild-type, fibrillin-1 deficient, and fibulin-5 null), each subjected to 3 pharmacological inter- ventions (L-NAME, doxycycline, and BAPN). That is, we will use genetically modified mouse models of graded decreases in elastic fiber integrity, not initially diminished elastin, for this will allow progressive changes to be quantified independent of possible compensatory adaptations that occur during development in elastin deficient mice. We expect loss of nitric oxide (L-NAME group) to highlight a role of smooth muscle tone and exacerbate the progression of wall stiffening, diminished proteinase activity (doxycycline) to separate roles of mechanical damage and chemical degradation of elastin while attenuating wall stiffening, and inhibiting collagen cross-linking (BAPN) to separate the coupled effects of elastin on the stiffness of extant collagen from the role of new collagen deposition. The experimental data will be used to construct, verify, and validate a novel fluid-solid-interaction model that can reveal precisely the effects of individual determinants of wall stiffening on system-level hemodynamics. Once accomplished for the mouse, parametric studies will be performed on 3 prototypical models of hemodynamics in humans (young, middle-aged, and old) to reveal, for the first time, the effects of progressive wall stiffening on clinical metrics of hemodynamics such as pulse wave velocity, pulse pressure, and pulse pressure waveform. We submit that modeling studies alone can delineate effects of spatially and temporally progressive increases in arterial stiffening on system-level hemodynamics, with the potential to identify improved indicators of early stiffening that may allow an earlier clinical intervention that can prevent the longer-term irreversible changes to the microstructure that otherwise inevitably occur.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Alberto Figueroa其他文献

Influencia conjunta de la autoestima y la motivación escolar en la elección de un programa universitario
大学课程选择中自我评价与学习动机的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Karmach;C. Delgado;P. Zerega;Carlos Alberto Figueroa
  • 通讯作者:
    Carlos Alberto Figueroa

Carlos Alberto Figueroa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Alberto Figueroa', 18)}}的其他基金

Mechanisms Underlying The Progression of Large Artery Stiffness in Hypertension
高血压大动脉僵硬进展的机制
  • 批准号:
    9249668
  • 财政年份:
    2010
  • 资助金额:
    $ 38.61万
  • 项目类别:
Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension
高血压动脉僵硬进展的机制
  • 批准号:
    8309463
  • 财政年份:
    2010
  • 资助金额:
    $ 38.61万
  • 项目类别:
Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension
高血压动脉僵硬进展的机制
  • 批准号:
    8149952
  • 财政年份:
    2010
  • 资助金额:
    $ 38.61万
  • 项目类别:

相似国自然基金

生物炭原位修复底泥PAHs的老化特征与影响机制
  • 批准号:
    42307107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
  • 批准号:
    42307503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
  • 批准号:
    82360625
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
  • 批准号:
    42377093
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
  • 批准号:
    42307479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of an electrical impedance myography (EIM) vaginal device for the evaluation of pelvic skeletal muscles
开发用于评估盆腔骨骼肌的电阻抗肌动描记 (EIM) 阴道装置
  • 批准号:
    10822537
  • 财政年份:
    2023
  • 资助金额:
    $ 38.61万
  • 项目类别:
The role of adipose tissue in adaptive responses to exercise
脂肪组织在运动适应性反应中的作用
  • 批准号:
    10569307
  • 财政年份:
    2023
  • 资助金额:
    $ 38.61万
  • 项目类别:
Calorie Restriction and Hallmarks of Aging in Drosophila
果蝇的热量限制和衰老标志
  • 批准号:
    10901041
  • 财政年份:
    2023
  • 资助金额:
    $ 38.61万
  • 项目类别:
Abdominal Pain in Older Patients in Emergency Departments
急诊科老年患者的腹痛
  • 批准号:
    10739136
  • 财政年份:
    2023
  • 资助金额:
    $ 38.61万
  • 项目类别:
A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
  • 批准号:
    10795414
  • 财政年份:
    2023
  • 资助金额:
    $ 38.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了