Membrane Protein Production Using the Yeast SPP System
使用酵母 SPP 系统生产膜蛋白
基本信息
- 批准号:8529714
- 负责人:
- 金额:$ 6.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:BacteriaBacterial ProteinsBacterial ToxinsBiochemicalBiologicalBiological AssayBiological ProcessCell AdhesionCell physiologyCell surfaceCellsCenters for Disease Control and Prevention (U.S.)ComplementCoupledDataDatabasesDevelopmentDiabetes MellitusDiseaseEndoribonucleasesEotaxinEpidemicEscherichia coliFamily memberFoundationsGLUT2 geneGLUT4 geneGenerationsGeneticGenomeGlucose TransporterGoalsGrowthHealthHomeostasisHumanIncidenceInsulinKnowledgeLifeLinkMalignant NeoplasmsMediatingMembrane ProteinsMessenger RNAMetabolicMethodsMissionModelingMolecular ChaperonesNatureNoiseNon-Insulin-Dependent Diabetes MellitusNuclear Magnetic ResonanceOrganismPharmacologic SubstancePhysiologicalPlayPost-Translational Protein ProcessingProcessProductionPropertyProtein AnalysisProtein BiosynthesisProteinsReagentRecombinant ProteinsRecoveryRecruitment ActivityResolutionRoleSLC2A1 geneSaccharomyces cerevisiaeSignal TransductionStructureSubunit VaccinesSystemTechnologyTestingToxic effectToxinUnited States National Institutes of HealthVertebral columnX-Ray CrystallographyYeastsanimationbaseendoribonucleaseglucose transportimprovedinsightleukotriene-C4 synthasenew technologynovel strategiesnovel therapeutic interventionoverexpressionprotein expressionprotein foldingprotein functionprotein structurepublic health relevancequantumreceptorstructural biologystructural genomicssuccessyeast protein
项目摘要
DESCRIPTION (provided by applicant): Membrane proteins play a critical role in dynamic cellular processes that are essential to maintain homeostasis and human health. Determining the structure of these proteins complements classical genetic and biochemical approaches to understanding their function, yet structural analysis has been hampered by difficulties in expressing and purifying proteins that are properly folded. The unfolded nature of eukaryotic proteins obtained from bacterial expression systems has been attributed to lack of post-translational modifications, the absence of chaperones or other eukaryotic processes that influence folding, and the possibility that the protein is intrinsically unfolded in nature. A first generation expression system for eukaryotic protein expression has been developed that has the potential to improve the expression and recovery of correctly folded proteins. This system, called the yeast SPP system, uses Saccharomyces cerevisiae and a bacterial toxin called MazF to impart a state of growth arrest that allows continued expression of recombinant protein without the toxicity that is frequently caused by overexpression, resulting in an increased yield of the target protein coupled with reduced background of yeast proteins. The long-term goal is to establish the yeast SPP system to produce biologically-important membrane proteins for structural studies. Filling this gap in structure-function studies represents an important key to developing new therapeutic approaches for diseases linked to membrane proteins. This proposal will establish proof-of-concept that this novel approach is capable of achieving robust production of properly folded eukaryotic proteins through the accomplishment of three specific aims. Aim 1 will optimize the first generation yeast SPP system using Saccharomyces cerevisiae and the MazF toxin by producing human eotaxin as a model target protein. Comparison with NMR data from eotaxin produced by yeast SPP vs. conventional methods will establish the utility of this technology. Aim 2 will further adapt the SPP system for the expression and purification of selected yeast and human membrane proteins where structural information is available. Heteronuclear Single Quantum Coherence (HSQC) and backbone resonance assignment analysis will validate proteins produced by the yeast SPP system. Aim 3 will extend these studies further to produce biologically-important membrane proteins involved in glucose transport. These studies fit with the mission of the NIH Structural Biology Roadmap by providing a significant advance in technology that will advance the study of membrane protein structure.
PUBLIC HEALTH RELEVANCE: Understanding the structure of proteins found on the surface of cells, called membrane proteins, can provide important insight into their role in health and disease. However, it is difficult to produce and purify these proteins in their natural form. This project will develop new technology using yeast to produce human membrane proteins that can be studied to advance our knowledge of how they function, thereby generating new approaches to treat disease.
描述(由申请人提供):膜蛋白在动态细胞过程中发挥着关键作用,这对于维持体内平衡和人类健康至关重要。确定这些蛋白质的结构补充了理解其功能的经典遗传和生化方法,但结构分析因表达和纯化正确折叠的蛋白质方面的困难而受到阻碍。从细菌表达系统获得的真核蛋白质的未折叠性质归因于缺乏翻译后修饰、不存在影响折叠的分子伴侣或其他真核过程,以及蛋白质本质上是未折叠的可能性。已经开发出用于真核蛋白质表达的第一代表达系统,该系统具有改善正确折叠蛋白质的表达和回收的潜力。该系统称为酵母 SPP 系统,使用酿酒酵母和一种名为 MazF 的细菌毒素来赋予生长停滞状态,从而允许重组蛋白持续表达,而不会产生过度表达经常引起的毒性,从而提高目标产量蛋白质加上酵母蛋白质背景降低。长期目标是建立酵母SPP系统来生产具有生物学意义的膜蛋白,用于结构研究。填补结构功能研究中的这一空白是开发膜蛋白相关疾病新治疗方法的重要关键。该提案将建立概念验证,即这种新方法能够通过实现三个特定目标来实现正确折叠的真核蛋白质的稳健生产。目标 1 将使用酿酒酵母和 MazF 毒素,通过产生人嗜酸细胞趋化因子作为模型靶蛋白来优化第一代酵母 SPP 系统。将酵母 SPP 产生的嗜酸细胞趋化因子与传统方法的 NMR 数据进行比较,将确定该技术的实用性。目标 2 将进一步调整 SPP 系统,用于表达和纯化选定的酵母和人膜蛋白(其中可获得结构信息)。异核单量子相干 (HSQC) 和骨架共振分配分析将验证酵母 SPP 系统产生的蛋白质。目标 3 将进一步扩展这些研究,以生产参与葡萄糖转运的具有生物学重要性的膜蛋白。这些研究通过提供显着的技术进步来推进膜蛋白结构的研究,符合 NIH 结构生物学路线图的使命。
公共健康相关性:了解细胞表面蛋白质(称为膜蛋白)的结构,可以提供有关其在健康和疾病中的作用的重要见解。然而,很难以天然形式生产和纯化这些蛋白质。该项目将开发利用酵母生产人类膜蛋白的新技术,通过研究这些蛋白可以增进我们对其功能的了解,从而产生治疗疾病的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NANCY ANN WOYCHIK其他文献
NANCY ANN WOYCHIK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NANCY ANN WOYCHIK', 18)}}的其他基金
Repurposing Mycobacterium tuberculosis tRNase toxins for cancer chemotherapy
重新利用结核分枝杆菌 tRNase 毒素进行癌症化疗
- 批准号:
10354376 - 财政年份:2021
- 资助金额:
$ 6.34万 - 项目类别:
Repurposing Mycobacterium tuberculosis tRNase toxins for cancer chemotherapy
重新利用结核分枝杆菌 tRNase 毒素进行癌症化疗
- 批准号:
10532244 - 财政年份:2021
- 资助金额:
$ 6.34万 - 项目类别:
Genome exploration through toxin-mediated ribosome stalling
通过毒素介导的核糖体停滞进行基因组探索
- 批准号:
10159845 - 财政年份:2020
- 资助金额:
$ 6.34万 - 项目类别:
Genome exploration through toxin-mediated ribosome stalling
通过毒素介导的核糖体停滞进行基因组探索
- 批准号:
10396107 - 财政年份:2020
- 资助金额:
$ 6.34万 - 项目类别:
Genome exploration through toxin-mediated ribosome stalling
通过毒素介导的核糖体停滞进行基因组探索
- 批准号:
10034312 - 财政年份:2020
- 资助金额:
$ 6.34万 - 项目类别:
Genome exploration through toxin-mediated ribosome stalling
通过毒素介导的核糖体停滞进行基因组探索
- 批准号:
10616690 - 财政年份:2020
- 资助金额:
$ 6.34万 - 项目类别:
Proteome reprogramming by tRNA-cleaving toxins
通过 tRNA 裂解毒素进行蛋白质组重编程
- 批准号:
10112828 - 财政年份:2020
- 资助金额:
$ 6.34万 - 项目类别:
Transcriptome and proteome remodeling by Mycobacterium tuberculosis MazF toxins
结核分枝杆菌 MazF 毒素的转录组和蛋白质组重塑
- 批准号:
10307528 - 财政年份:2019
- 资助金额:
$ 6.34万 - 项目类别:
Transcriptome and proteome remodeling by Mycobacterium tuberculosis MazF toxins
结核分枝杆菌 MazF 毒素的转录组和蛋白质组重塑
- 批准号:
9886870 - 财政年份:2019
- 资助金额:
$ 6.34万 - 项目类别:
Transcriptome and proteome remodeling by Mycobacterium tuberculosis MazF toxins
结核分枝杆菌 MazF 毒素的转录组和蛋白质组重塑
- 批准号:
10062823 - 财政年份:2019
- 资助金额:
$ 6.34万 - 项目类别:
相似国自然基金
EGCG干预金黄色葡萄球菌肠毒素A对NLRP3蛋白复合体激活的分子机制
- 批准号:31772082
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
HMGB1内化诱导的巨噬细胞焦亡(pyroptosis)在脓毒症中的作用和意义
- 批准号:81501358
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
结核分枝杆菌的SirR因子与RelJK毒素-抗毒素蛋白之间的交互作用及其调控细菌生长的分子机制研究
- 批准号:31301079
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
流感嗜血杆菌病理和感染的结构生物学基础
- 批准号:31070645
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
细菌毒素蛋白MazF切割RNA的分子机理及其诱发人细胞凋亡的机制的研究
- 批准号:30570409
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Brewing anti-toxin drugs using probiotic yeast
利用益生菌酵母酿造抗毒素药物
- 批准号:
10687670 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Host range determinants of bacterial exfoliative toxins
细菌剥脱性毒素的宿主范围决定因素
- 批准号:
10742306 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Determine host surface interactions of MARTX toxin of foodborne Vibrio vulnificus
确定食源性创伤弧菌 MARTX 毒素宿主表面相互作用
- 批准号:
10537885 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Genome-wide CRISPR-Cas9 screens in insect cells to characterize insecticidal toxins
在昆虫细胞中进行全基因组 CRISPR-Cas9 筛选以表征杀虫毒素
- 批准号:
10502624 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Calpain-mediated lung endothelial barrier modulation in acute lung injury
钙蛋白酶介导的肺内皮屏障调节急性肺损伤
- 批准号:
10367958 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别: